SECTION 39 ASPHALT CONCRETE (Issued 06-05-09) # Replace Section 39 with: SECTION 39 HOT MIX ASPHALT ## 39-1 GENERAL #### 39-1.01 DESCRIPTION Section 39 includes specifications for producing and placing hot mix asphalt (HMA) by mixing aggregate and asphalt binder at a mixing plant and spreading and compacting the HMA mixture. The special provisions specify one or more type of HMA, including: - 1. Type A - 2. Type B - 3. Open graded friction course (OGFC). OGFC includes hot mix asphalt (open graded), rubberized hot mix asphalt (open graded) (RHMA-O) and rubberized hot mix asphalt (open graded high binder) (RHMA-O-HB) - 4. Rubberized hot mix asphalt (gap graded) (RHMA-G) The special provisions specify the HMA construction process, including: - 1. Standard - 2. Method - 3. Quality Control / Quality Assurance (QC / QA) ## **39-1.02 MATERIALS** ## 39-1.02A Geosynthetic Pavement Interlayer Geosynthetic pavement interlayer must comply with the specifications for pavement fabric or paving mat in Section 88-1.07, "Pavement Interlayer." ## 39-1.02B Tack Coat Tack coat must comply with the specifications for asphaltic emulsion in Section 94, "Asphaltic Emulsion," or asphalt binder in Section 92, "Asphalts." Choose the type and grade. Notify the Engineer if you dilute asphaltic emulsion with water. The weight ratio of added water to asphaltic emulsion must not exceed 1 to 1. Measure added water either by weight or volume in compliance with the specifications for weighing, measuring, and metering devices under Section 9-1.01, "Measurement of Quantities," or you may use water meters from water districts, cities, or counties. If you measure water by volume, apply a conversion factor to determine the correct weight. With each dilution, submit in writing: 1. The weight ratio of water to bituminous material in the original asphaltic emulsion - 2. The weight of asphaltic emulsion before diluting - 3. The weight of added water - 4. The final dilution weight ratio of water to asphaltic emulsion # 39-1.02C Asphalt Binder Asphalt binder in HMA must comply with Section 92, "Asphalts," or Section 39-1.02D, "Asphalt Rubber Binder." The special provisions specify the grade. Asphalt binder for geosynthetic pavement interlayer must comply with Section 92, "Asphalts." Choose from Grades PG 64-10, PG 64-16, or PG 70-10. ## 39-1.02D Asphalt Rubber Binder #### General Use asphalt rubber binder in RHMA-G, RHMA-O, and RHMA-O-HB. Asphalt rubber binder must be a combination of: - 1. Asphalt binder - 2. Asphalt modifier - 3. Crumb rubber modifier (CRM) The combined asphalt binder and asphalt modifier must be 80.0 ± 2.0 percent by weight of the asphalt rubber binder. # **Asphalt Modifier** Asphalt modifier must be a resinous, high flash point, and aromatic hydrocarbon, and comply with: **Asphalt Modifier for Asphalt Rubber Binder** | Quality Characteristic | ASTM | Specification | |--|--------|---------------| | Viscosity, m ² /s (x 10 ⁻⁶) at 100 °C | D 445 | $X\pm3^{a}$ | | Flash Point, CL.O.C., °C | D 92 | 207 minimum | | Molecular Analysis | | | | Asphaltenes, percent by mass | D 2007 | 0.1 maximum | | Aromatics, percent by mass | D 2007 | 55 minimum | Note: Asphalt modifier must be from 2.0 percent to 6.0 percent by weight of the asphalt binder in the asphalt rubber binder. ## **Crumb Rubber Modifier** CRM consists of a ground or granulated combination of scrap tire CRM and high natural CRM. CRM must be 75.0 ± 2.0 percent scrap tire CRM and 25.0 ± 2.0 percent high natural CRM by total weight of CRM. Scrap tire CRM must be from any combination of automobile tires, truck tires, or tire buffings. Sample and test scrap tire CRM and high natural CRM separately. CRM must comply with: ^a The symbol "X" is the proposed asphalt modifier viscosity. "X" must be between 19 and 36. A change in "X" requires a new asphalt rubber binder design. **Crumb Rubber Modifier for Asphalt Rubber Binder** | Quality Characteristic | Test Method | Specification | |---|-------------|---------------| | Scrap tire CRM gradation | LP-10 | 100 | | (% passing No. 8 sieve) | | | | High natural CRM gradation | LP-10 | 100 | | (% passing No. 10 sieve) | | | | Wire in CRM (% max.) | LP-10 | 0.01 | | Fabric in CRM (% max.) | LP-10 | 0.05 | | CRM particle length (inch max.) ^a | 1 | 3/16 | | CRM specific gravity ^a | CT 208 | 1.1 - 1.2 | | Natural rubber content in high natural CRM (%) ^a | ASTM D 297 | 40.0 - 48.0 | Only use CRM ground and granulated at ambient temperature. If steel and fiber are cryogenically separated, it must occur before grinding and granulating. Only use cryogenically produced CRM particles that can be ground or granulated and not pass through the grinder or granulator. CRM must be dry, free-flowing particles that do not stick together. CRM must not cause foaming when combined with the asphalt binder and asphalt modifier. You may add calcium carbonate or talc up to 3 percent by weight of CRM. # **Asphalt Rubber Binder Design and Profile** Submit in writing an asphalt rubber binder design and profile that complies with the asphalt rubber binder specifications. In the design, designate the asphalt, asphalt modifier, and CRM and their proportions. The profile must include the same component sources for the asphalt rubber binder used. Design the asphalt rubber binder from testing you perform for each quality characteristic and for the reaction temperatures expected during production. The 24-hour (1,440-minute) interaction period determines the design profile. At a minimum, mix asphalt rubber binder components, take samples, and perform and record the following tests: **Asphalt Rubber Binder Reaction Design Profile** | Test | |] | Minute | s of Re | action | a | | Limits | |---|-----|----|--------|---------|--------|-----|------|---------------| | | 45 | 60 | 90 | 120 | 240 | 360 | 1440 | | | Cone penetration @ 77 °F, 0.10-mm (ASTM D 217) | X b | | | | X | | X | 25 - 70 | | Resilience @ 77 °F, percent rebound (ASTM D 5329) | X | | | | X | | X | 18 min. | | Field softening point, °F (ASTM D 36) | X | | | | X | | X | 125 - 165 | | Viscosity, centipoises (LP-11) | X | X | X | X | X | X | X | 1,500 - 4,000 | Notes: # **Asphalt Rubber Binder** After interacting for a minimum of 45 minutes, asphalt rubber binder must comply with: ^a Test at mix design and for Certificate of Compliance. ^a Six hours (360 minutes) after CRM addition, reduce the oven temperature to 275 °F for a period of 16 hours. After the 16-hour (1320 minutes) cool-down after CRM addition, reheat the binder to the reaction temperature expected during production for sampling and testing at 24 hours (1440 minutes). ^b "X" denotes required testing **Asphalt Rubber Binder** | Quality Characteristic | Test for Quality | Test Method | Specif | ication | |-------------------------------------|-----------------------|-------------|---------|---------| | | Control or Acceptance | | Minimum | Maximum | | Cone penetration @ 77 °F, 0.10-mm | Acceptance | ASTM D 217 | 25 | 70 | | Resilience @ 77 °F, percent rebound | Acceptance | ASTM D 5329 | 18 | | | Field softening point, °F | Acceptance | ASTM D 36 | 125 | 165 | | Viscosity @ 375 °F, centipoises | Quality Control | LP-11 | 1,500 | 4,000 | # 39-1.02E Aggregate Aggregate must be clean and free from deleterious substances. Aggregate: - 1. Retained on the No. 4 sieve is coarse - 2. Passing the No. 4 sieve is fine - 3. Added and passing the No. 30 sieve is supplemental fine, including: - 3.1. Hydrated lime - 3.2. Portland cement - 3.3. Fines from dust collectors The special provisions specify the aggregate gradation for each HMA type. The specified aggregate gradation is before the addition of asphalt binder and includes supplemental fines. The Engineer tests for aggregate grading under California Test 202, modified by California Test 105 if there is a difference in specific gravity of 0.2 or more between the coarse and fine parts of different aggregate blends. Choose a sieve size target value (TV) within each target value limit presented in the aggregate gradation tables. # Aggregate Gradation (Percentage Passing) HMA Types A and B 3/4-inch HMA Types A and B | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 1" | 100 | _ | | 3/4" | 90 - 100 | TV ±5 | | 1/2" | 70 - 90 | TV ±6 | | No. 4 | 45 - 55 | TV ±7 | | No. 8 | 32 - 40 | TV ±5 | | No. 30 | 12 - 21 | TV ±4 | | No. 200 | 2 - 7 | TV ±2 | 1/2-inch HMA Types A and B | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 3/4" | 100 | | | 1/2" | 95 - 99 | TV ±6 | | 3/8" | 75 - 95 | TV ±6 | | No. 4 | 55 - 66 | TV ±7 | | No. 8 | 38 - 49 | TV ±5 | | No. 30 | 15 - 27 | TV ±4 | | No. 200 | 2 - 8 | TV ±2 | 3/8-inch HMA Types A and B | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 1/2" | 100 | _ | | 3/8" | 95 - 100 | TV ±6 | | No. 4 | 58 - 72 | TV ±7 | | No. 8 | 34 - 48 | TV ±6 | | No. 30 | 18 - 32 | TV ±5 | | No. 200 | 2 - 9 | TV ±2 | No. 4 HMA Types A and B | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 3/8" | 100 | _ | | No. 4 | 95 - 100 | TV ±7 | | No. 8 | 72 - 77 | TV ±7 | | No. 30 | 37 - 43 | TV ±7 | | No. 200 | 2 - 12 | TV ±4 | # Rubberized Hot Mix Asphalt - Gap Graded (RHMA-G) # 3/4-inch RHMA-G | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 1" | 100 | _ | | 3/4" | 95 - 100 | TV ±5 | | 1/2" | 83 - 87 | TV ±6 | | 3/8" | 65 - 70 | TV ±6 | | No. 4 | 28 - 42 | TV ±7 | | No. 8 | 14 - 22 | TV ±5 | | No. 200 | 0 - 6 | TV ±2 | # 1/2-inch RHMA-G | Sieve Sizes | Target Value Limits |
Allowable Tolerance | |-------------|---------------------|---------------------| | 3/4" | 100 | | | 1/2" | 90 - 100 | TV ±6 | | 3/8" | 83 - 87 | TV ±6 | | No. 4 | 28 - 42 | TV ±7 | | No. 8 | 14 - 22 | TV ±5 | | No. 200 | 0 - 6 | TV ±2 | # **Open Graded Friction Course (OGFC)** # 1-inch OGFC | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 1 1/2" | 100 | _ | | 1" | 99 - 100 | TV ±5 | | 3/4" | 85 - 96 | TV ±5 | | 1/2" | 55 - 71 | TV ±6 | | No. 4 | 10 - 25 | TV ±7 | | No. 8 | 6 - 16 | TV ±5 | | No. 200 | 1 - 6 | TV ±2 | # 1/2-inch OGFC | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 3/4" | 100 | _ | | 1/2" | 95 - 100 | TV ±6 | | 3/8" | 78 - 89 | TV ±6 | | No. 4 | 28 - 37 | TV ±7 | | No. 8 | 7 - 18 | TV ±5 | | No. 30 | 0 - 10 | TV ±4 | | No. 200 | 0 - 3 | TV ±2 | # 3/8-inch OGFC | Sieve Sizes | Target Value Limits | Allowable Tolerance | |-------------|---------------------|---------------------| | 1/2" | 100 | _ | | 3/8" | 90 - 100 | TV ±6 | | No. 4 | 29 - 36 | TV ±7 | | No. 8 | 7 - 18 | TV ±6 | | No. 30 | 0 - 10 | TV ±5 | | No. 200 | 0 - 3 | TV ±2 | Before the addition of asphalt binder and lime treatment, aggregate must comply with: **Aggregate Quality** | Quality Characteristic | Test Method | | HMA | Туре | | |--------------------------------------|-------------|----|-----|--------|------| | | | A | В | RHMA-G | OGFC | | Percent of crushed particles | CT 205 | | | | | | Coarse aggregate (% min.) | | | | | | | One fractured face | | 90 | 25 | | 90 | | Two fractured faces | | 75 | | 90 | 75 | | Fine aggregate (% min) | | | | | | | (Passing No. 4 sieve | | | | | | | and retained on No. 8 sieve.) | | | | | | | One fractured face | | 70 | 20 | 70 | 90 | | Los Angeles Rattler (% max.) | CT 211 | | | | | | Loss at 100 Rev. | | 12 | | 12 | 12 | | Loss at 500 Rev. | | 45 | 50 | 40 | 40 | | Sand equivalent (min.) ^a | CT 217 | 47 | 42 | 47 | | | Fine aggregate angularity (% min.) b | AASHTO T | | | | | | | 304 Method | 45 | 45 | 45 | | | | A | | | | | | Flat and elongated particles (% max. | ASTM D | | | | | | by weight @ 5:1) | 4791 | 10 | 10 | 10 | 10 | Notes: # **39-1.02F** Reclaimed Asphalt Pavement You may produce HMA using reclaimed asphalt pavement (RAP). HMA produced using RAP must comply with the specifications for HMA except aggregate quality specifications do not apply to RAP. You may substitute RAP aggregate for a part of the virgin aggregate in HMA in a quantity not exceeding 15.0 percent of the aggregate blend. Do not use RAP in OGFC and RHMA-G. Assign the substitution rate of RAP aggregate for virgin aggregate with the job mix formula (JMF) submittal. The JMF must include the percent of RAP used. If you change your assigned RAP aggregate substitution rate by more than 5 percent (within the 15.0 percent limit), submit a new JMF. Process RAP from asphalt concrete. You may process and stockpile RAP throughout the project's life. Prevent material contamination and segregation. Store RAP in stockpiles on smooth surfaces free of debris and organic material. Processed RAP stockpiles must consist only of homogeneous RAP. # 39-1.03 HOT MIX ASPHALT MIX DESIGN REQUIREMENTS #### **39-1.03A** General A mix design consists of performing California Test 367 and laboratory procedures on combinations of aggregate gradations and asphalt binder contents to determine the optimum binder content (OBC) and HMA mixture qualities. If RAP is used, use Laboratory Procedure LP-9. The result of the mix design becomes the proposed JMF. ^a Reported value must be the average of 3 tests from a single sample. ^b The Engineer waives this specification if HMA contains less than 10 percent of nonmanufactured sand by weight of total aggregate. Manufactured sand is fine aggregate produced by crushing rock or gravel. Use Form CEM-3512 to document aggregate quality and mix design data. Use Form CEM-3511 to present the JMF. Laboratories testing aggregate qualities and preparing the mix design and JMF must be qualified under the Department's Independent Assurance Program. Take samples under California Test 125. The Engineer reviews the aggregate qualities, mix design, and JMF and verifies and accepts the JMF. You may change the JMF during production. Do not use the changed JMF until the Engineer accepts it. Except when adjusting the JMF in compliance with Section 39-1.03E, "Job Mix Formula Verification," perform a new mix design and submit in writing a new JMF submittal for changing any of the following: - 1. Target asphalt binder percentage - 2. Asphalt binder supplier - 3. Asphalt rubber binder supplier - 4. Component materials used in asphalt rubber binder or percentage of any component materials - 5. Combined aggregate gradation - 6. Aggregate sources - 7. Substitution rate for RAP aggregate of more than 5 percent - 8. Any material in the JMF For OGFC, submit in writing a complete JMF submittal except asphalt binder content. The Engineer determines the asphalt binder content under California Test 368 within 20 days of your complete JMF submittal and provides you a Form CEM-3513. # 39-1.03B Hot Mix Asphalt Mix Design Perform a mix design that produces HMA in compliance with: **Hot Mix Asphalt Mix Design Requirements** | Quality Characteristic | Test Method | A Design Requirem | HMA Type | | |--|---------------------|-------------------|-------------|-------------------| | | | A | В | RHMA-G | | Air voids content (%) | CT 367 ^a | 4.0 | 4.0 | Special | | | | | | Provisions | | Voids in mineral aggregate (% min.) | LP-2 | | | | | No. 4 grading | | 17.0 | 17.0 | | | 3/8" grading | | 15.0 | 15.0 | | | 1/2" grading | | 14.0 | 14.0 | $18.0 - 23.0^{b}$ | | 3/4" grading | | 13.0 | 13.0 | $18.0 - 23.0^{b}$ | | Voids filled with asphalt (%) | LP-3 | | | | | No. 4 grading | | 76.0 - 80.0 | 76.0 - 80.0 | Note d | | 3/8" grading | | 73.0 - 76.0 | 73.0 - 76.0 | | | 1/2" grading | | 65.0 - 75.0 | 65.0 - 75.0 | | | 3/4" grading | | 65.0 - 75.0 | 65.0 - 75.0 | | | Dust proportion | LP-4 | | | | | No. 4 and 3/8" gradings | | 0.9 - 2.0 | 0.9 - 2.0 | Note d | | 1/2" and 3/4" gradings | | 0.6 - 1.3 | 0.6 - 1.3 | | | Stabilometer value (min.) ^c | CT 366 | | | | | No. 4 and 3/8" gradings | | 30 | 30 | | | 1/2" and 3/4" gradings | | 37 | 35 | 23 | Notes: For stability and air voids content, prepare 3 briquettes at the OBC and test for compliance. Report the average of 3 tests. Prepare new briquettes and test if the range of stability for the 3 briquettes is more than 8 points. The average air void content may vary from the specified air void content by ± 0.5 percent. You may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If you use the same briquettes and tests using bulk specific gravity fail, you may prepare 3 new briquettes and determine a new bulk specific gravity. # 39-1.03C Job Mix Formula Submittal Each JMF submittal must consist of: - 1. Proposed JMF on Form CEM-3511 - 2. Mix design documentation on Form CEM-3512 dated within 12 months of submittal - 3. JMF verification on Form CEM-3513, if applicable - 4. JMF renewal on Form CEM-3514, if applicable - 5. Materials Safety Data Sheets (MSDS) for: - 5.1. Asphalt binder - 5.2. Base asphalt binder used in asphalt rubber binder - 5.3. CRM and asphalt modifier used in asphalt rubber binder ^a Calculate the air voids content of each specimen using California Test 309 and Lab Procedure LP-1. Modify California Test 367, Paragraph C5, to use the exact air voids content specified in the selection of OBC. ^b Voids in mineral aggregate for RHMA-G must be within this range. $^{^{\}rm c}$ Modify California Test 304, Part 2.B.2.c: "After compaction in the compactor, cool to 140 $^{\circ}\pm$ 5 $^{\circ}$ F by allowing the briquettes to cool at room temperature for 0.5-hour, then place the briquettes in the oven at 140 $^{\circ}$ F for a minimum of 2 hours and not more than 3 hours." ^dReport this value in the JMF submittal. - 5.4. Blended asphalt rubber binder mixture - 5.5. Supplemental fine aggregate except fines from dust collectors - 5.6. Antistrip additives If the Engineer requests in writing, sample the following materials in the presence of the Engineer and place in labeled containers weighing no more than 50 pounds each: - 1. Coarse, fine, and supplemental fine aggregate from stockpiles, cold feed belts, or hot bins. Samples must include at least 120 pounds for each coarse aggregate, 80 pounds for each fine aggregate, and 10 pounds for each type of supplemental fines. The Department combines these aggregate samples to comply with the JMF target values submitted on Form CEM-3511. - 2. RAP from stockpiles or RAP system. Samples must be at least 60 pounds. - 3. Asphalt binder from the binder supplier. Samples must be in two 1-quart cylindrical shaped cans with open top and friction lids. - 4. Asphalt rubber binder with the components blended in the proportions to be used. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids. Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate and RAP, split the samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing. ## 39-1.03D Job Mix Formula Review The Engineer reviews each mix design and proposed JMF within 5 business days from the complete JMF submittal. The review consists of reviewing the mix design procedures and comparing the proposed JMF with the specifications. The Engineer may verify aggregate qualities during this review period. ## 39-1.03E Job Mix Formula Verification If you cannot submit a Department-verified JMF on Form CEM-3513 dated within 12 months before HMA production, the Engineer verifies the JMF. Based on your testing and production experience, you may submit on Form CEM-3511 an adjusted JMF before the
Engineer's verification testing. JMF adjustments may include a change in the: - 1. Asphalt binder content target value up to ± 0.6 percent from the optimum binder content value submitted on Form CEM-3512 except do not adjust the target value for asphalt rubber binder for RHMA-G below 7.0 percent - 2. Aggregate gradation target values within the target value limits specified in the aggregate gradation tables For HMA Type A, Type B, and RHMA-G, the Engineer verifies the JMF from samples taken from HMA produced by the plant to be used. Notify the Engineer in writing at least 2 business days before sampling materials. In the Engineer's presence and from the same production run, take samples of: - 1. Aggregate - 2. Asphalt binder - 3. RAP - 4. HMA Sample aggregate from cold feed belts or hot bins. Sample RAP from the RAP system. Sample HMA under California Test 125 except if you request in writing and the Engineer approves, you may sample from any of the following locations: - 1. The plant - 2. A truck - 3. A windrow - 4. The paver hopper - 5. The mat behind the paver You may sample from a different project including a non-Department project if you make arrangements for the Engineer to be present during sampling. For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 split parts to the Engineer and use 1 part for your testing. The Engineer verifies each proposed JMF within 20 days of receiving verification samples. If you request in writing, the Engineer verifies RHMA-G quality requirements within 3 business days of sampling. Verification is testing for compliance with the specifications for: - 1. Aggregate quality - 2. Aggregate gradation (JMF TV \pm tolerance) - 3. Asphalt binder content (JMF TV \pm tolerance) - 4. HMA quality specified in the table Hot Mix Asphalt Mix Design Requirements except: - 4.1. Air voids content (design value \pm 2.0 percent) - 4.2. Voids filled with asphalt (report only if an adjustment for asphalt binder content target value is less than or equal to \pm 0.3 percent from OBC) - 4.3. Dust proportion (report only if an adjustment for asphalt binder content target value is less than or equal to \pm 0.3 percent from OBC) The Engineer prepares 3 briquettes from a single split sample. To verify the JMF for stability and air voids content, the Engineer tests the 3 briquettes and reports the average of 3 tests. The Engineer prepares new briquettes if the range of stability for the 3 briquettes is more than 8 points. The Engineer may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If the Engineer uses the same briquettes and the tests using bulk specific gravity fail, the Engineer prepares 3 new briquettes and determines a new bulk specific gravity. If the Engineer verifies the JMF, the Engineer provides you a Form CEM-3513. If the Engineer's tests on plant-produced samples do not verify the JMF, the Engineer notifies you in writing and you must submit a new JMF submittal or submit an adjusted JMF based on your testing. JMF adjustments may include a change in the: - 1. Asphalt binder content target value up to ± 0.6 percent from the optimum binder content value submitted on Form CEM-3512 except do not adjust the target value for asphalt rubber binder for RHMA-G below 7.0 percent - 2. Aggregate gradation target values within the target value limits specified in the aggregate gradation tables You may adjust the JMF only once due to a failed verification test. An adjusted JMF requires a new Form CEM-3511 and verification of a plant-produced sample. The Engineer reverifies the JMF if HMA production has stopped for longer than 30 days and the verified JMF is older than 12 months. For each HMA type and aggregate size specified, the Engineer verifies at the State's expense up to 2 proposed JMF including a JMF adjusted after verification failure. The Engineer deducts \$3,000 from payments for each verification exceeding this limit. This deduction does not apply to verifications initiated by the Engineer or if a JMF expires while HMA production is stopped longer than 30 days. #### 39-1.03F Job Mix Formula Renewal You may request a JMF renewal by submitting the following: - 1. Proposed JMF on Form CEM-3511 - 2. A previously verified JMF documented on Form CEM-3513 dated within 12 months - 3. Mix design documentation on Form CEM-3512 used for the previously verified JMF If the Engineer requests in writing, sample the following materials in the presence of the Engineer and place in labeled containers weighing no more than 50 pounds each: - 1. Coarse, fine, and supplemental fine aggregate from stockpiles, cold feed belts, or hot bins. Samples must include at least 120 pounds for each coarse aggregate, 80 pounds for each fine aggregate, and 10 pounds for each type of supplemental fines. The Department combines these aggregate samples to comply with the JMF target values submitted on Form CEM-3511. - 2. RAP from stockpiles or RAP system. Samples must be at least 60 pounds. - 3. Asphalt binder from the binder supplier. Samples must be in two 1-quart cylindrical shaped cans with open top and friction lids. - 4. Asphalt rubber binder with the components blended in the proportions to be used. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids. Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate and RAP, split samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing. The Engineer reviews each complete JMF renewal submittal within 5 business days. The Engineer may verify aggregate qualities during this review period. Notify the Engineer in writing at least 2 business days before sampling materials. For aggregate, RAP, and HMA, split the samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing. The Engineer verifies the JMF renewal submittal under Section 39-1.03E, "Job Mix Formula Verification," except: - 1. The Engineer retains samples until you provide test results for your part on Form CEM-3514. - 2. The Engineer tests samples of materials obtained from the HMA production unit after you submit test results that comply with the specifications for the quality characteristics under Section 39-1.03E, "Job Mix Formula Verification." - 3. The Engineer verifies each proposed JMF within 30 days of receiving verification samples. - 4. You may not adjust the JMF due to a failed verification. - 5. For each HMA type and aggregate gradation specified, the Engineer verifies at the State's expense 1 proposed JMF. If the Engineer verifies the JMF renewal, the Engineer provides you a Form CEM-3513. # 39-1.03G Job Mix Formula Acceptance You may start HMA production if: - 1. The Engineer's review of the JMF shows compliance with the specifications. - 2. The Department has verified the JMF within 12 months before HMA production. - 3. The Engineer accepts the verified JMF. # 39-1.04 CONTRACTOR QUALITY CONTROL ## **39-1.04A** General Establish, maintain, and change a quality control system to ensure materials and work comply with the specifications. Submit quality control test results to the Engineer within 3 days of a request except when QC / QA is specified. You must identify the HMA sampling location in your Quality Control Plan. During production, take samples under California Test 125 except if you request in writing and the Engineer approves, you may sample HMA from: - 1. The plant - 2. The truck - 3. A windrow - 4. The paver hopper - 5. The mat behind the paver ## **39-1.04B** Prepaying Conference Meet with the Engineer at a prepaving conference at a mutually agreed time and place. Discuss methods of performing the production and paving work. ## 39-1.04C Asphalt Rubber Binder Take asphalt rubber binder samples from the feed line connecting the asphalt rubber binder tank to the HMA plant. Sample and test asphalt rubber binder under Laboratory Procedure LP-11. Test asphalt rubber binder for compliance with the viscosity specifications in Section 39-1.02, "Materials." During asphalt rubber binder production and HMA production using asphalt rubber binder, measure viscosity every hour with not less than 1 reading for each asphalt rubber binder batch. Log measurements with corresponding time and asphalt rubber binder temperature. Submit the log daily in writing. Submit a Certificate of Compliance under Section 6-1.07, "Certificates of Compliance." With the Certificate of Compliance, submit test results in writing for CRM and asphalt modifier with each truckload delivered to the HMA plant. A Certificate of Compliance for asphalt modifier must not represent more than 5,000 pounds. Use an AASHTO-certified laboratory for testing. Sample and test gradation and wire and fabric content of CRM once per 10,000 pounds of scrap tire CRM and once per 3,400 pounds of high natural CRM. Sample and test scrap tire CRM and high natural CRM separately. Submit certified weight slips in writing for the CRM and asphalt modifier furnished. # 39-1.04D Aggregate Determine the aggregate moisture content and RAP moisture content in continuous mixing plants at least twice a day during production and adjust the plant controller. Determine the RAP moisture content in batch mixing plants at least twice a day during production and adjust the plant controller. ## **39-1.04E** Reclaimed Asphalt Pavement Perform RAP quality control testing each day. Sample RAP once daily and determine the RAP aggregate gradation under Laboratory Procedure LP-9 and submit the results to the Engineer in writing with the combined aggregate gradation. ## 39-1.04F Density Cores To determine density for Standard and QC / QA projects, take 4-inch or 6-inch diameter density cores at least once every 5 business days. Take 1 density core for every 250 tons of HMA from random locations the Engineer designates. Take density
cores in the Engineer's presence and backfill and compact holes with material authorized by the Engineer. Before submitting a density core to the Engineer, mark it with the density core's location and place it in a protective container. If a density core is damaged, replace it with a density core taken within 1 foot longitudinally from the original density core. Relocate any density core located within 1 foot of a rumble strip to 1 foot transversely away from the rumble strip. ## 39-1.04G Briquettes Prepare 3 briquettes for each stability and air voids content determination. Report the average of 3 tests. Prepare new briquettes and test if the range of stability for the 3 briquettes is more than 12 points. You may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If you use these briquettes and tests using bulk specific gravity fail, you may prepare 3 new briquettes and determine a new bulk specific gravity. ## 39-1.05 ENGINEER'S ACCEPTANCE The Engineer's acceptance of HMA is specified in the sections for each HMA construction process. The Engineer samples materials for testing under California Test 125 and the applicable test method except samples may be taken from: ## 1. The plant from: - 1.1. A truck - 1.2. An automatic sampling device # 2. The mat behind the paver Sampling must be independent of Contractor quality control, statistically-based, and random. If you request, the Engineer splits samples and provides you with a part. The Engineer accepts HMA based on: - 1. Accepted JMF - 2. Accepted QCP for Standard and QC / QA - 3. Compliance with the HMA Acceptance tables - 4. Acceptance of a lot for QC / QA - 5. Visual inspection The Engineer prepares 3 briquettes for each stability and air voids content determination. The Engineer reports the average of 3 tests. The Engineer prepares new briquettes and test if the range of stability for the 3 briquettes is more than 8 points. The Engineer may use the briquettes used for stability testing to determine bulk specific gravity under CT 308. If the Engineer uses the same briquettes and the tests using bulk specific gravity fail, the Engineer prepares 3 new briquettes and determines a new bulk specific gravity. #### 39-1.06 DISPUTE RESOLUTION You and the Engineer must work together to avoid potential conflicts and to resolve disputes regarding test result discrepancies. Notify the Engineer in writing within 5 days of receiving a test result if you dispute the test result. If you or the Engineer dispute each other's test results, submit written quality control test results and copies of paperwork including worksheets used to determine the disputed test results to the Engineer. An Independent Third Party (ITP) performs referee testing. Before the ITP participates in a dispute resolution, the ITP must be accredited under the Department's Independent Assurance Program. The ITP must be independent of the project. By mutual agreement, the ITP is chosen from: - 1. A Department laboratory - 2. A Department laboratory in a district or region not in the district or region the project is located - 3. The Transportation Laboratory - 4. A laboratory not currently employed by you or your HMA producer If split quality control or acceptance samples are not available, the ITP uses any available material representing the disputed HMA for evaluation. ## 39-1.07 PRODUCTION START-UP EVALUATION The Engineer evaluates HMA production and placement at production start-up. Within the first 750 tons produced on the first day of HMA production, in the Engineer's presence and from the same production run, take samples of: - 1. Aggregate - 2. Asphalt binder - 3. RAP - 4. HMA Sample aggregate from cold feed belts or hot bins. Take RAP samples from the RAP system. Sample HMA under California Test 125 except if you request in writing and the Engineer approves, you may sample HMA from: - 1. The plant - 2. The truck - 3. A windrow - 4. The paver hopper - 5. The mat behind the paver For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 split parts to the Engineer and keep 1 part. For Standard and QC / QA projects, you and the Engineer must test the split samples and report test results in writing within 3 business days of sampling. If you proceed before receipt of the test results, the Engineer may consider the HMA placed to be represented by these test results. For Standard and QC / QA projects, take 4-inch or 6-inch diameter density cores within the first 750 tons on the first day of HMA production. For each density core, the Engineer reports the bulk specific gravity determined under California Test 308, Method A in addition to the percent of maximum theoretical density. You may test for in-place density at the density core locations and include them in your production tests for percent of maximum theoretical density. #### 39-1.08 PRODUCTION #### **39-1.08A** General Produce HMA in a batch mixing plant or a continuous mixing plant. Proportion aggregate by hot or cold feed control. HMA plants must be Department-qualified. Before production, the HMA plant must have a current qualification under the Department's Materials Plant Quality Program. During production, you may adjust: - 1. Hot or cold feed proportion controls for virgin aggregate and RAP - 2. The set point for asphalt binder content ## **39-1.08B** Mixing Mix HMA ingredients into a homogeneous mixture of coated aggregates. Asphalt binder must be between 275 °F and 375 °F when mixed with aggregate. Asphalt rubber binder must be between 375 °F and 425 °F when mixed with aggregate. When mixed with asphalt binder, aggregate must not be more than 325 °F except aggregate for OGFC with unmodified asphalt binder must be not more than 275 °F. Aggregate temperature specifications do not apply when you use RAP. HMA with or without RAP must not be more than 325 °F. # 39-1.08C Asphalt Rubber Binder Deliver scrap tire CRM and high natural CRM in separate bags. Either proportion and mix asphalt binder, asphalt modifier, and CRM simultaneously or premix the asphalt binder and asphalt modifier before adding CRM. If you premix asphalt binder and asphalt modifier, mix them for at least 20 minutes. When you add CRM, the asphalt binder and asphalt modifier must be between 375 °F and 440 °F. Do not use asphalt rubber binder during the first 45 minutes of the reaction period. During this period, the asphalt rubber binder mixture must be between 350 °F and the lower of 425 °F or 25 °F below the asphalt binder's flash point indicated in the MSDS. If any asphalt rubber binder is not used within 4 hours after the reaction period, discontinue heating. If the asphalt rubber binder drops below 375 °F, reheat before use. If you add more scrap tire CRM to the reheated asphalt rubber binder, the binder must undergo a 45-minute reaction period. The added scrap tire CRM must not exceed 10 percent of the total asphalt rubber binder weight. Reheated and reacted asphalt rubber binder must comply with the viscosity specifications for asphalt rubber binder in Section 39-1.02, "Materials." Do not reheat asphalt rubber binder more than twice. # 39-1.09 SUBGRADE, TACK COAT, AND GEOSYNTHETIC PAVEMENT INTERLAYER ## **39-1.09A** General Prepare subgrade or apply tack coat to surfaces receiving HMA. If specified, place geosynthetic pavement interlayer over a coat of asphalt binder. ## **39-1.09B Subgrade** Subgrade to receive HMA must comply with the compaction and elevation tolerance specifications in the sections for the material involved. Subgrade must be free of loose and extraneous material. If HMA is paved on existing base or pavement, remove loose paving particles, dirt, and other extraneous material by any means including flushing and sweeping. # **39-1.09C** Tack Coat Apply tack coat: - 1. To existing pavement including planed surfaces - 2. Between HMA layers - 3. To vertical surfaces of: - 3.1. Curbs - 3.2. Gutters - 3.3. Construction joints Before placing HMA, apply tack coat in 1 application at the minimum residual rate specified for the condition of the underlying surface: Tack Coat Application Rates for HMA Type A, Type B, and RHMA-G | Tack Coat Application Rates for Thyla Type A, Type D, and Rithia-G | | | | | | | |--|--|-------------|--------------------|--|--|--| | | Minimum Residual Rates (gallons per square yard) | | | | | | | | CSS1/CSS1h, | CRS1/CRS2, | Asphalt Binder and | | | | | HMA over: | SS1/SS1h and | RS1/RS2 and | PMRS2/PMCRS2 | | | | | HIVIA OVET: | QS1h/CQS1h | QS1/CQS1 | and | | | | | | Asphaltic | Asphaltic | PMRS2h/PMCRS2h | | | | | | Emulsion | Emulsion | Asphaltic Emulsion | | | | | New HMA (between layers) | 0.02 | 0.03 | 0.02 | | | | | Existing AC and PCC pavement | 0.03 | 0.04 | 0.03 | | | | | Planed pavement | 0.05 | 0.06 | 0.04 | | | | **Tack Coat Application Rates for OGFC** | Tuck Cout Application Rates for Core | | | | | | | |--------------------------------------|--|-------------|--------------------|--|--|--| | | Minimum Residual Rates (gallons per square yard) | | | | | | | | CSS1/CSS1h, | CRS1/CRS2, | Asphalt Binder and | | | | | OGFC over: | SS1/SS1h and | RS1/RS2 and | PMRS2/PMCRS2 | | | | | OGFC over: | QS1h/CQS1h | QS1/CQS1 | and | | | | | | Asphaltic | Asphaltic | PMRS2h/PMCRS2h | | | | | | Emulsion | Emulsion | Asphaltic Emulsion | | | | | New HMA | 0.03 | 0.04 | 0.03 | | | | | Existing AC and PCC pavement | 0.05 | 0.06 | 0.04 | | | | | Planed pavement | 0.06 | 0.07 | 0.05 | | | | If you dilute asphaltic emulsion, mix until homogeneous before application. Apply to vertical surfaces with a residual tack coat rate that will thoroughly coat the vertical face without running off. If you request in writing and the Engineer authorizes, you may: - 1. Change tack coat rates - 2. Omit
tack coat between layers of new HMA during the same work shift if: - 2.1. No dust, dirt, or extraneous material is present - 2.2. The surface is at least 140 °F Immediately in advance of placing HMA, apply additional tack coat to damaged areas or where loose or extraneous material is removed. Close areas receiving tack coat to traffic. Do not track tack coat onto pavement surfaces beyond the job site. Asphalt binder tack coat must be between 285 °F and 350 °F when applied. # 39-1.09D Geosynthetic Pavement Interlayer Place geosynthetic pavement interlayer in compliance with the manufacturer's recommendations. Before placing the geosynthetic pavement interlayer and asphalt binder: - 1. Repair cracks 1/4 inch and wider, spalls, and holes in the pavement. The State pays for this repair work under Section 4-1.03D, "Extra Work." - 2. Clean the pavement of loose and extraneous material. Immediately before placing the interlayer, apply 0.25 gallon ± 0.03 gallon of asphalt binder per square yard of interlayer or until the fabric is saturated. Apply asphalt binder the width of the geosynthetic pavement interlayer plus 3 inches on each side. At interlayer overlaps, apply asphalt binder on the lower interlayer the same overlap distance as the upper interlayer. Align and place the interlayer with no overlapping wrinkles, except a wrinkle that overlaps may remain if it is less than 1/2 inch thick. If the overlapping wrinkle is more than 1/2 inch thick, cut the wrinkle out and overlap the interlayer no more than 2 inches. The minimum HMA thickness over the interlayer must be 0.12 foot thick including conform tapers. Do not place the interlayer on a wet or frozen surface. Overlap the interlayer borders between 2 inches and 4 inches. In the direction of paving, overlap the following roll with the preceding roll at any break. You may use rolling equipment to correct distortions or wrinkles in the interlayer. If asphalt binder tracked onto the interlayer or brought to the surface by construction equipment causes interlayer displacement, cover it with a small quantity of HMA. Before placing HMA on the interlayer, do not expose the interlayer to: - 1. Traffic except for crossings under traffic control and only after you place a small HMA quantity - 2. Sharp turns from construction equipment - 3. Damaging elements Pave HMA on the interlayer during the same work shift. # 39-1.10 SPREADING AND COMPACTING EQUIPMENT Paving equipment for spreading must be: 1. Self-propelled - 2. Mechanical - 3. Equipped with a screed or strike-off assembly that can distribute HMA the full width of a traffic lane - 4. Equipped with a full-width compacting device - 5. Equipped with automatic screed controls and sensing devices that control the thickness, longitudinal grade, and transverse screed slope Install and maintain grade and slope references. The screed must produce a uniform HMA surface texture without tearing, shoving, or gouging. The paver must not leave marks such as ridges and indentations unless you can eliminate them by rolling. Rollers must be equipped with a system that prevents HMA from sticking to the wheels. You may use a parting agent that does not damage the HMA or impede the bonding of layers. In areas inaccessible to spreading and compacting equipment: - 1. Spread the HMA by any means to obtain the specified lines, grades and cross sections. - 2. Use a pneumatic tamper, plate compactor, or equivalent to achieve thorough compaction. # 39-1.11 TRANSPORTING, SPREADING, AND COMPACTING Do not pave HMA on a wet pavement or frozen surface. You may deposit HMA in a windrow and load it in the paver if: - 1. Paver is equipped with a hopper that automatically feeds the screed - 2. Loading equipment can pick up the windrowed material and deposit it in the paver hopper without damaging base material - 3. Activities for deposit, pick-up, loading, and paving are continuous - 4. HMA temperature in the windrow does not fall below 260 °F You may pave HMA in 1 or more layers on areas less than 5 feet wide and outside the traveled way including shoulders. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture. HMA handled, spread, or windrowed must not stain the finished surface of any improvement including pavement. Do not use petroleum products such as kerosene or diesel fuel to release HMA from trucks, spreaders, or compactors. HMA must be free of: - 1. Segregation - 2. Coarse or fine aggregate pockets - 3. Hardened lumps Longitudinal joints in the top layer must match specified lane edges. Alternate longitudinal joint offsets in lower layers at least 0.5 foot from each side of the specified lane edges. You may request in writing other longitudinal joint placement patterns. Until the adjoining through lane's top layer has been paved, do not pave the top layer of: - 1. Shoulders - 2. Tapers - 3. Transitions - 4. Road connections - 5. Driveways - 6. Curve widenings - 7. Chain control lanes - 8. Turnouts - 9. Turn pockets If the number of lanes change, pave each through lane's top layer before paving a tapering lane's top layer. Simultaneous to paving a through lane's top layer, you may pave an adjoining area's top layer including shoulders. Do not operate spreading equipment on any area's top layer until completing final compaction. If HMA (leveling) is specified, fill and level irregularities and ruts with HMA before spreading HMA over base, existing surfaces, or bridge decks. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture. HMA used to change an existing surface's cross slope or profile is not HMA (leveling). If placing HMA against the edge of existing pavement, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. If placing HMA against the edge of a longitudinal or transverse construction joint and the joint is damaged or not placed to a neat line, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. Repair or remove and replace damaged pavement at your expense. Rolling must leave the completed surface compacted and smooth without tearing, cracking, or shoving. Complete finish rolling activities before the pavement surface temperature is: - 1. Below 150 °F for HMA with unmodified binder - 2. Below 140 °F for HMA with modified binder - 3. Below 200 °F for RHMA-G If a vibratory roller is used as a finish roller, turn the vibrator off. Do not use a pneumatic tired roller to compact RHMA-G. For Standard and QC/QA, if a 3/4-inch aggregate grading is specified, you may use a 1/2-inch aggregate grading if the specified paved thickness is from 0.15 foot to 0.20 foot thick. Spread and compact HMA under Section 39-3.03, "Spreading and Compacting Equipment," and Section 39-3.04, "Transporting, Spreading, and Compacting," for any of the following: - 1. Specified paved thickness is less than 0.15 foot. - 2. Specified paved thickness is less than 0.20 foot and a 3/4-inch aggregate grading is specified and used. - 3. You spread and compact at: - 3.1. Asphalt concrete surfacing replacement areas - 3.2. Leveling courses - 3.3. Areas the Engineer determines conventional compaction and compaction measurement methods are impeded Do not allow traffic on new HMA pavement until its mid-depth temperature is below 160 °F. If you request in writing and the Engineer authorizes, you may cool HMA Type A and Type B with water when rolling activities are complete. Apply water under Section 17, "Watering." Spread sand at a rate between 1 pound and 2 pounds per square yard on new RHMA-G, RHMA-O, and RHMA-O-HB pavement when finish rolling is complete. Sand must be free of clay or organic matter. Sand must comply with Section 90-3.03, "Fine Aggregate Grading." Keep traffic off the pavement until spreading sand is complete. ## **39-1.12 SMOOTHNESS** #### **39-1.12A** General Determine HMA smoothness with a profilograph and a straightedge. Smoothness specifications do not apply to OGFC placed on existing pavement not constructed under the same project. If portland cement concrete is placed on HMA: - 1. Cold plane the HMA finished surface to within specified tolerances if it is higher than the grade specified by the Engineer. - 2. Remove and replace HMA if the finished surface is lower than 0.05 foot below the grade specified by the Engineer. # 39-1.12B Straightedge The HMA pavement top layer must not vary from the lower edge of a 12-foot long straightedge: - 1. More than 0.01 foot when the straight edge is laid parallel with the centerline - 2. More than 0.02 foot when the straightedge is laid perpendicular to the centerline and extends from edge to edge of a traffic lane - 3. More than 0.02 foot when the straightedge is laid within 24 feet of a pavement conform # 39-1.12C Profilograph Under California Test 526, determine the zero (null) blanking band Profile Index (PI₀) and must-grinds on the top layer of HMA Type A, Type B, and RHMA-G pavement. Take 2 profiles within each traffic lane, 3 feet from and parallel with the edge of each lane. A must-grind is a deviation of 0.3 inch or more in a length of 25 feet. You must correct must-grinds. For OGFC, only determine must-grinds when placed over HMA constructed under the same project. The top layer of the underlying HMA must comply with the smoothness specifications before placing OGFC. Profile pavement in the Engineer's presence. Choose the time of profiling. On tangents and horizontal curves with a centerline radius of curvature 2,000 feet or more, the PI_0 must be at most 3 inches per 0.1-mile section. On horizontal curves with a centerline radius of curvature between 1,000 feet and 2,000 feet including pavement within the superelevation transitions, the PI_0 must be at most 6 inches per
0.1-mile section. Before the Engineer accepts HMA pavement for smoothness, submit written final profilograms. Submit 1 electronic copy of profile information in Microsoft Excel and 1 electronic copy of longitudinal pavement profiles in ".erd" format or other ProVAL compatible format to the Engineer and to: # Smoothness@dot.ca.gov The following HMA pavement areas do not require a PI₀. You must measure these areas with a 12-foot straightedge and determine must-grinds with a profilograph: - 1. New HMA with a total thickness less than or equal to 0.25 foot - 2. HMA sections of city or county streets and roads, turn lanes and collector lanes that are less than 1,500 feet in length The following HMA pavement areas do not require a PI₀. You must measure these areas with a 12-foot straightedge: - 1. Horizontal curves with a centerline radius of curvature less than 1,000 feet including pavement within the superelevation transitions of those curves - 2. Within 12 feet of a transverse joint separating the pavement from: - 2.1. Existing pavement not constructed under the same project - 2.2. A bridge deck or approach slab - 3. Exit ramp termini, truck weigh stations, and weigh-in-motion areas - 4. If steep grades and superelevation rates greater than 6 percent are present on: - 4.1. Ramps - 4.2. Connectors - 5. Turn lanes - 6. Areas within 15 feet of manholes or drainage transitions - 7. Acceleration and deceleration lanes for at-grade intersections - 8. Shoulders and miscellaneous areas - 9. HMA pavement within 3 feet from and parallel to the construction joints formed between curbs, gutters, or existing pavement ## 39-1.12D Smoothness Correction If the top layer of HMA Type A, Type B, or RHMA-G pavement does not comply with the smoothness specifications, grind the pavement to within tolerances, remove and replace it, or place a layer of HMA. The Engineer must authorize your choice of correction before the work begins. Remove and replace the areas of OGFC not in compliance with the must-grind and straightedge specifications, except you may grind OGFC for correcting smoothness: - 1. At a transverse joint separating the pavement from pavement not constructed under the same project - 2. Within 12 feet of a transverse joint separating the pavement from a bridge deck or approach slab Corrected HMA pavement areas must be uniform rectangles with edges: - 1. Parallel to the nearest HMA pavement edge or lane line - 2. Perpendicular to the pavement centerline Measure the corrected HMA pavement surface with a profilograph and a 12-foot straightedge and correct the pavement to within specified tolerances. If a must-grind area or straightedged pavement cannot be corrected to within specified tolerances, remove and replace the pavement. On ground areas not overlaid with OGFC, apply fog seal coat under Section 37-1, "Seal Coats." ## 39-1.13 MISCELLANEOUS AREAS AND DIKES Miscellaneous areas are outside the traveled way and include: - 1. Median areas not including inside shoulders - 2. Island areas - 3. Sidewalks - 4. Gutters - 5. Gutter flares - 6. Ditches - 7. Overside drains - 8. Aprons at the ends of drainage structures Spread miscellaneous areas in 1 layer and compact to the specified lines and grades. For miscellaneous areas and dikes: - 1. Do not submit a JMF. - 2. Choose the 3/8-inch or 1/2-inch HMA Type A and Type B aggregate gradations. - 3. Minimum asphalt binder content must be 6.8 percent for 3/8-inch aggregate and 6.0 percent for 1/2-inch aggregate. If you request in writing and the Engineer authorizes, you may reduce the minimum asphalt binder content. - 4. Choose asphalt binder Grade PG 70-10 or the same grade specified for HMA. ## 39-2 STANDARD # 39-2.01 DESCRIPTION If HMA is specified as Standard, construct it under Section 39-1, "General," this Section 39-2, "Standard," and Section 39-5, "Measurement and Payment." # 39-2.02 CONTRACTOR QUALITY CONTROL # 39-2.02A Quality Control Plan Establish, implement, and maintain a Quality Control Plan (QCP) for HMA. The QCP must describe the organization and procedures you will use to: - 1. Control the quality characteristics - 2. Determine when corrective actions are needed (action limits) - 3. Implement corrective actions When you submit the proposed JMF, submit the written QCP. You and the Engineer must discuss the QCP during the prepaving conference. The QCP must address the elements affecting HMA quality including: - 1. Aggregate - 2. Asphalt binder - 3. Additives - 4. Production - 5. Paving The Engineer reviews each QCP within 5 business days from the submittal. Hold HMA production until the Engineer accepts the QCP in writing. The Engineer's QCP acceptance does not mean your compliance with the QCP will result in acceptable HMA. Section 39-1.05, "Engineer's Acceptance," specifies HMA acceptance. # 39-2.02B Quality Control Testing Perform sampling and testing at the specified frequency for the following quality characteristics: Minimum Quality Control - Standard | - | | | Quality Control | | | | |----------------------------------|-----------|-------------|-----------------|-------------|----------------|----------------| | Quality | Test | Minimum | | HMA | Туре | | | Characteristic | Method | Sampling | | | | | | | | and | A | В | RHMA-G | OGFC | | | | Testing | | | | | | | | Frequency | | | | | | Aggregate gradation ^a | CT 202 | 1 750 | JMF ± | JMF ± | JMF ± | JMF ± | | | | 1 per 750 | Tolerance b | Tolerance b | Tolerance b | Tolerance b | | Sand equivalent | CT 217 | tons and | 47 | 42 | 47 | | | (min.) c | | any | | | | | | Asphalt binder | CT 379 or | remaining | JMF ± 0.45 | JMF ± 0.45 | JMF ± 0.50 | $JMF \pm 0.50$ | | content (%) | 382 | part | | | | | | HMA moisture | CT 226 or | 1 per | 1.0 | 1.0 | 1.0 | 1.0 | | content (%, max.) | CT 370 | 2,500 tons | | | | | | , , , | | but not | | | | | | | | less than 1 | | | | | | | | per paving | | | | | | | | day | | | | | | Percent of maximum | Quality | 2 per | 91 - 97 | 91 - 97 | 91 - 97 | | | theoretical density | control | business | | | | | | (%) ^{d, e} | plan | day (min.) | | | | | | Stabilometer value | CT 366 | One per | | | | | | (min.) c, f | | 4,000 tons | | | | | | No. 4 and 3/8" | | or 2 per 5 | 30 | 30 | | | | gradings | | business | | | | | | 1/2" and 3/4" | | days, | 37 | 35 | 23 | | | gradings | | which- | | | | | | Air voids content | CT 367 | ever is | 4 ± 2 | 4 ± 2 | Specification | | | (%) c, g | | more | | | ± 2 | | | Aggregate moisture | CT 226 or | | | | | | | content at | CT 370 | | | | | | | continuous mixing | | | | | | | | plants and RAP | | 2 per day | | | | | | moisture content at | | during | | | | | | continuous mixing | | production | | | | | | plants and batch | | | | | | | | mixing plants h | | | | | | | | Percent of crushed | CT 205 | | | | | | | particles coarse | | | | | | | | aggregate (%, min.) | | | | | | | | One fractured | | | 90 | 25 | | 90 | | face | | As | | | | | | Two fractured | | necessary | 75 | | 90 | 75 | | faces | | and | | | | | | Fine aggregate (%, | | designat- | | | | | | min) | | ed in the | | | | | | (Passing No. 4 | | QCP. At | | | | | | sieve and | | least once | | | | | | retained on No. | | per project | | | | | | 8 sieve.) | | | | | | | | One fractured | | | 70 | 20 | 70 | 90 | | face | | | | - | - | - | | | l . | I | I | | | | | Los Angeles Rattler | CT 211 | | | | | | |----------------------|----------|-----------------------|---------------------|---------------------|---------------------------|---------------| | (%, max.) | | | | | | | | Loss at 100 rev. | | | 12 | | 12 | 12 | | Loss at 500 rev. | | | 45 | 50 | 40 | 40 | | Flat and elongated | ASTM D | | Report only | Report only | Report only | Report only | | particles (%, max. | 4791 | | | | | | | by weight @ 5:1) | | | | | | | | Fine aggregate | AASHTO | | | | | | | angularity (%, min.) | Т 304, | | 45 | 45 | 45 | | | | Method A | | | | | | | Voids filled with | LP-3 | | | | | | | asphalt (%) i | | | | | | | | No. 4 grading | | | 76.0 - 80.0 | 76.0 - 80.0 | Report only | | | 3/8" grading | | | 73.0 - 76.0 | 73.0 - 76.0 | | | | 1/2" grading | | | 65.0 - 75.0 | 65.0 - 75.0 | | | | 3/4" grading | | | 65.0 - 75.0 | 65.0 - 75.0 | | | | Voids in mineral | LP-2 | | | | | | | aggregate (% min.) i | | | | | | | | No. 4 grading | | | 17.0 | 17.0 | | | | 3/8" grading | | | 15.0 | 15.0 | | | | 1/2" grading | | | 14.0 | 14.0 | $18.0 - 23.0^{\text{ j}}$ | | | 3/4" grading | | | 13.0 | 13.0 | $18.0 - 23.0^{\text{ j}}$ | | | Dust proportion i | LP-4 | | | | | | | No. 4 and 3/8" | | | | | | | | gradings | | | 0.9 - 2.0 | 0.9 - 2.0 | Report only | | | 1/2" and 3/4" | | | | | | | | gradings | | | 0.6 - 1.3 | 0.6 - 1.3 | | | | Smoothness | Section | | 12-foot | 12-foot | 12-foot | 12-foot | | | 39-1.12 | | straightedge, | straightedge, | straightedge, | straightedge | | | | | must-grind, | must-grind, | must-grind, | and must- | | | | | and PI ₀ | and PI ₀ | and PI ₀ | grind | | Asphalt rubber | Section | Section | | | | | | binder viscosity @ | 39-1.02D | 39-1.04C | | | 1,500 - 4,000 | 1,500 - 4,000 | | 350 °F, centipoises | | 33-1.0 4 C | | | | | | Asphalt modifier | Section | Section | | _ | Section 39- | Section 39- | | | 39-1.02D | 39-1.04C | | | 1.02D | 1.02D | | Crumb rubber | Section | Section | | | Section 39- | Section 39- | | modifier | 39-1.02D | 39-1.04C | | | 1.02D | 1.02D | #### Notes: ^a Determine combined aggregate gradation containing RAP under Laboratory Procedure LP-9. ^b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate." ^c Report the average of 3 tests from a single split sample. ^d Required for HMA Type A, Type B, and RHMA-G if the specified paved thickness is at least 0.15 foot. ^e Determine maximum theoretical density (California Test 309) at the frequency specified for Test Maximum Density under California Test 375, Part 5.D. $^{^{\}rm f}$ Modify California Test 304, Part 2.B.2.c: "After compaction in the
mechanical compactor, cool to 140 $^{\circ}$ F \pm 5 $^{\circ}$ F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 $^{\circ}$ F for a minimum of 2 hours and not more than 3 hours." ^g Determine the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309. ^h For adjusting the plant controller at the HMA plant. ⁱReport only if the adjustment for asphalt binder content target value is less than or equal to \pm 0.3 percent from OBC. ^j Voids in mineral aggregate for RHMA-G must be within this range. For any single quality characteristic except smoothness, if 2 consecutive quality control test results do not comply with the action limits or specifications: - 1. Stop production. - 2. Notify the Engineer in writing. - 3. Take corrective action. - 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway. # 39-2.03 ENGINEER'S ACCEPTANCE # **39-2.03A** Testing The Engineer samples for acceptance testing and tests for: **HMA Acceptance - Standard** | HMA Acceptance - Standard | | | | | | |----------------------------------|-----------|---------------------------|---------------------------|--|-------------------------| | Quality Characteristic | Test | | HM | A Type | | | | Method | A | В | RHMA-G | OGFC | | Aggregate gradation ^a | CT 202 | JMF ± | JMF ± | JMF ± | JMF ± | | Sieve 3/4" 1/2" 3/8" | 1 | Tolerance ^c | Tolerance ^c | Tolerance ^c | Tolerance ^c | | 1/2" X ^b | 1 | Toterunce | Toterance | Totorance | Toterance | | 3/8" X | | | | | | | | - | | | | | | No. 4 X X No. 8 X X X | - | | | | | | | | | | | | | No. 200 X X X | | | | | | | Sand equivalent (min.) d | CT 217 | 47 | 42 | 47 | | | Asphalt binder content (%) | CT 379 or | $JMF \pm 0.45$ | $JMF \pm 0.45$ | $JMF \pm 0.50$ | $\mathrm{JMF} \pm 0.50$ | | | 382 | | | | | | HMA moisture content (%, | CT 226 or | 1.0 | 1.0 | 1.0 | 1.0 | | max.) | CT 370 | | | | | | Percent of maximum | CT 375 | 91 – 97 | 91 – 97 | 91 – 97 | | | theoretical density (%) e, f | | | | | | | Stabilometer value (min.) d, g | CT 366 | | | | | | No. 4 and 3/8" gradings | | 30 | 30 | | | | 1/2" and 3/4" gradings | | 37 | 35 | 23 | | | Air voids content (%) d, h | CT 367 | 4 ± 2 | 4 ± 2 | Specification ± | | | | | | | 2 | | | Percent of crushed particles | CT 205 | | | | | | Coarse aggregate (%, min.) | | | | | | | One fractured face | | 90 | 25 | | 90 | | Two fractured faces | | 75 | | 90 | 75 | | Fine aggregate (%, min) | | | | | | | (Passing No. 4 sieve and | | | | | | | retained on No. 8 sieve.) | | | | | | | One fractured face | | 70 | 20 | 70 | 90 | | Percent of crushed particles | CT 205 | | | | | | Coarse aggregate (%, min.) | | | | | | | One fractured face | | 90 | 25 | | 90 | | Two fractured faces | | 75 | | 90 | 75 | | I Wo Mustared Mass | | , 0 | | | , , | | Los Angeles Rattler (%, | CT 211 | | | | | | max.) | 01211 | 12 | | 12 | 12 | | Loss at 100 rev. | | 45 | 50 | 40 | 40 | | Loss at 500 rev. | | .0 | | | .0 | | Fine aggregate angularity (%, | AASHTO | | | | | | min.) | T 304, | 45 | 45 | 45 | | | | Method A | 15 | 10 | 15 | | | Flat and elongated particles | ASTM D | Report only | Report only | Report only | Report only | | (%, max. by weight @ 5:1) | 4791 | report only | Report only | 1 topoit only | Report only | | Voids filled with asphalt (%) | LP-3 | | | | | | No. 4 grading | 121-3 | 76.0 - 80.0 | 76.0 - 80.0 | Report only | | | 3/8" grading | | 73.0 - 76.0 | 73.0 - 36.0 | Report only | | | 1/2" grading | | 65.0 - 75.0 | 65.0 - 75.0 | | | | 3/4" grading | | 65.0 - 75.0 $65.0 - 75.0$ | 65.0 - 75.0 $65.0 - 75.0$ | | | | Voids in mineral aggregate | LP-2 | 05.0 - 75.0 | 05.0 - 75.0 | | | | (% min.) ⁱ | L1 -2 | | | | | | No. 4 grading | | 17.0 | 17.0 | | | | 3/8" grading | | 17.0 | 15.0 | | | | | | 13.0 | 14.0 | 18.0 – 23.0 ^j | | | 1/2" grading | | | | $18.0 - 23.0^{\circ}$
$18.0 - 23.0^{\circ}$ | | | 3/4" grading | | 13.0 | 13.0 | 16.0 - 25.0° | | | Dust proportion i | LP-4 | | | | | |-------------------------|---------|---------------------|-----------------|-----------------|----------------| | No. 4 and 3/8" gradings | | 0.9 - 2.0 | 0.9 - 2.0 | Report only | | | 1/2" and 3/4" gradings | | 0.6 - 1.3 | 0.6 - 1.3 | | | | Smoothness | Section | 12-foot | 12-foot | 12-foot | 12-foot | | | 39-1.12 | straightedge, | straightedge, | straightedge, | straightedge | | | | must-grind, | must-grind, and | must-grind, and | and must-grind | | | | and PI ₀ | PI_0 | PI_0 | | | Asphalt binder | Various | Section 92 | Section 92 | Section 92 | Section 92 | | Asphalt rubber binder | Various | | | Section 92- | Section 92- | | | | | | 1.02(C) and | 1.02(C) and | | | | | | Section 39- | Section 39- | | | | | | 1.02D | 1.02D | | Asphalt modifier | Various | | | Section 39- | Section 39- | | | | | | 1.02D | 1.02D | | Crumb rubber modifier | Various | | | Section 39- | Section 39- | | | | | | 1.02D | 1.02D | ^a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9. - 1. California Test 308, Method A, to determine in-place density of each density core instead of using the nuclear gauge in Part 4, "Determining In-Place Density By The Nuclear Density Device." - 2. California Test 309 to determine maximum theoretical density instead of calculating test maximum density in Part 5, "Determining Test Maximum Density." No single test result may represent more than the smaller of 750 tons or 1 day's production. For any single quality characteristic except smoothness, if 2 consecutive acceptance test results do not comply with the specifications: - 1. Stop production. - 2. Take corrective action. - 3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts. - 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway. ^b "X" denotes the sieves the Engineer considers for the specified aggregate gradation. ^c The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate." ^d The Engineer reports the average of 3 tests from a single split sample. ^e The Engineer determines percent of maximum theoretical density if the specified paved thickness is at least 0.15 foot under California Test 375 except the Engineer uses: ^f The Engineer determines maximum theoretical density (California Test 309) at the frequency specified for Test Maximum Density under California Test 375, Part 5.D. ^g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to $140~^{\circ}F \pm 5~^{\circ}F$ by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at $140~^{\circ}F$ for a minimum of 2 hours and not more than 3 hours." ^h The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309. ⁱ Report only if the adjustment for asphalt binder content target value is less than or equal to \pm 0.3 percent from OBC. ^j Voids in mineral aggregate for RHMA-G must be within this range. The Engineer tests the density core you take from each 250 tons of HMA production. The Engineer determines the percent of maximum theoretical density for each density core by determining the density core's density and dividing by the maximum theoretical density. If the specified total paved thickness is at least 0.15 foot and any layer is less than 0.15 foot, the Engineer determines the percent of maximum theoretical density from density cores taken from the final layer measured the full depth of the total paved HMA thickness. For percent of maximum theoretical density, the Engineer determines a deduction for each test result outside the specifications in compliance with: Reduced Payment Factors for Percent of Maximum Theoretical Density | Reduced | a Payment Factors for . | Reduced Payment Factors for Percent of Maximum Theoretical Density | | | | | | | |---------------------|-------------------------|--|--------------------|--|--|--|--|--| | HMA Type A and B | Reduced Payment | HMA Type A and B | Reduced Payment | | | | | | | and RHMA-G | Factor | and RHMA-G | Factor | | | | | | | Percent of Maximum | | Percent of Maximum | | | | | | | | Theoretical Density | | Theoretical Density | | | | | | | | 91.0 | 0.0000 | 97.0 | 0.0000 | | | | | | | 90.9 | 0.0125 | 97.1 | 0.0125 | | | | | | | 90.8 | 0.0250 | 97.2 | 0.0250 | | | | | | | 90.7 | 0.0375 | 97.3 | 0.0375 | | | | | | | 90.6 | 0.0500 | 97.4 | 0.0500 | | | | | | | 90.5 | 0.0625 | 97.5 | 0.0625 | | | | | | | 90.4 | 0.0750 | 97.6 | 0.0750 | | | | | | | 90.3 | 0.0875 | 97.7 | 0.0875 | | | | | | | 90.2 | 0.1000 | 97.8 | 0.1000 | | | | | | | 90.1 | 0.1125 | 97.9 | 0.1125 | | | | | | | 90.0 | 0.1250 | 98.0 | 0.1250 | | | | | | | 89.9 | 0.1375 | 98.1 | 0.1375 | | | | | | | 89.8 | 0.1500 | 98.2 | 0.1500 | | | | | | | 89.7 | 0.1625 | 98.3 | 0.1625 | | | | | | | 89.6 | 0.1750 | 98.4 | 0.1750 | | | | | | | 89.5 | 0.1875 | 98.5 | 0.1875 | | | | | | | 89.4 | 0.2000 | 98.6 | 0.2000 | | | | | | | 89.3 | 0.2125 | 98.7 | 0.2125 | | | | | | | 89.2 | 0.2250 | 98.8 | 0.2250 | | | | | | | 89.1 | 0.2375 | 98.9 | 0.2375 | | | | | | | 89.0 | 0.2500 | 99.0 | 0.2500 | | | | | | | < 89.0 | Remove and Replace | > 99.0 | Remove and Replace | | | | | | | | | | | | | | | | # 39-2.04 TRANSPORTING, SPREADING, AND COMPACTING Determine the number of rollers needed to obtain the specified density and surface finish. # **39-3 METHOD** #### 39-3.01 DESCRIPTION If HMA is
specified as Method, construct it under Section 39-1, "General," this Section 39-3, "Method," and Section 39-5, "Measurement and Payment." ## 39-3.02 ENGINEER'S ACCEPTANCE # **39-3.02A** Testing The Engineer samples for acceptance testing and tests for: **HMA Acceptance - Method** | Quality Characteristic | Test | HMA Acceptanc | | Туре | | |--|-----------------|------------------------|---------------------------------|--|---------------------------------| | Quanty Characteristic | Method | A | В | RHMA-G | OGFC | | Aggregate gradation ^a | CT 202 | JMF ± | | | | | Aggregate gradation | C1 202 | Tolerance b | JMF ±
Tolerance ^b | JMF ± Tolerance b | JMF ±
Tolerance ^b | | Cond agriculant (min) c | CT 217 | | | | Tolerance | | Sand equivalent (min.) c | CT 217 | 47 | 42 | 47 | | | Asphalt binder content (%) | CT 379 or | $JMF \pm 0.45$ | $JMF \pm 0.45$ | $JMF \pm 0.50$ | $JMF \pm 0.50$ | | XX 64 | 382 | 1.0 | 1.0 | 4.0 | 4.0 | | HMA moisture content (%, | CT 226 or | 1.0 | 1.0 | 1.0 | 1.0 | | max.) | CT 370 | | | | | | Stabilometer value (min.) c, | CT 366 | | | | | | N 4 1 2/0" | | 20 | 20 | | | | No. 4 and 3/8" | | 30 | 30 | | | | gradings | | 27 | 25 | 22 | | | 1/2" and 3/4" gradings | CT 205 | 37 | 35 | 23 | | | Percent of crushed | CT 205 | | | | | | particles | | | | | | | Coarse aggregate (% min.) | | 00 | 25 | | 00 | | One fractured face | | 90
75 | 25 | 90 | 90
75 | | Two fractured faces | | 75 | | 90 | 75 | | Fine aggregate (% min) | | | | | | | (Passing No. 4 sieve | | | | | | | and retained on No. 8 | | | | | | | sieve.) | | 70 | 20 | 70 | 0.0 | | One fractured face | CT 211 | 70 | 20 | 70 | 90 | | Los Angeles Rattler (% | CT 211 | | | | | | max.) | | 12 | | 10 | 10 | | Loss at 100 rev. | | 12 |
50 | 12 | 12 | | Loss at 500 rev. Air voids content (%) c, e | CT 267 | 45 | 50 | 40 | 40 | | Air voids content (%) | CT 367 | 4 ± 2 | 4 ± 2 | Specification ± | | | E'n a san sa | A A CLUTO | | | 2 | | | Fine aggregate angularity | AASHTO
T 204 | 45 | 45 | 4.5 | | | (% min.) | T 304, | 45 | 45 | 45 | | | F1 . 1 1 . 1 1 | Method A | | | | | | Flat and elongated particles | ASTM D | D | D | D | D | | (% max. by weight @ 5:1) | 4791 | Report only | Report only | Report only | Report only | | Voids filled with asphalt | LP-3 | | | D . 1 | | | (%) ^f | | 760 000 | 760 000 | Report only | | | No. 4 grading | | 76.0 – 80.0 | 76.0 – 80.0 | | | | 3/8" grading | | 73.0 – 76.0 | 73.0 – 76.0 | | | | 1/2" grading | | 65.0 – 75.0 | 65.0 – 75.0 | | | | 3/4" grading | 102 | 65.0 – 75.0 | 65.0 – 75.0 | | | | Voids in mineral aggregate (% min.) f | LP-2 | | | | | | | | 17.0 | 17.0 | | | | No. 4 grading | | 17.0
15.0 | 17.0
15.0 | | | | 3/8" grading
1/2" grading | | 14.0 | 14.0 | 18.0 – 23.0 ^g | | | 3/4" grading | | 13.0 | 13.0 | $18.0 - 23.0^{\circ}$
$18.0 - 23.0^{\circ}$ | | | | LP-4 | 13.0 | 13.0 | 16.0 - 25.0 | | | Dust proportion ^t No. 4 and 3/8" | LF-4 | 0.9 - 2.0 | 0.9 - 2.0 | Danort only | | | No. 4 and 3/8" gradings | | 0.9 - 2.0
0.6 - 1.3 | 0.9 - 2.0
0.6 - 1.3 | Report only | | | 1/2" and 3/4" gradings | | 0.0 – 1.3 | 0.0 – 1.3 | | | | Smoothness | Section | 12-foot | 12-foot | 12-foot | 12-foot | | Sinouniess | 39-1.12 | straightedge | straightedge | straightedge | straightedge | | | 37-1.12 | and must-grind | and must-grind | and must-grind | and must-grind | | | | and must-gimu | and must-grind | and must-gimu | and must-gimu | | Asphalt binder | Various | Section 92 | Section 92 | Section 92 | Section 92 | |-----------------------|---------|------------|------------|-------------|-------------| | Asphalt rubber binder | Various | | | Section 92- | Section 92- | | | | | | 1.02(C) and | 1.02(C) and | | | | | | Section 39- | Section 39- | | | | | | 1.02D | 1.02D | | Asphalt modifier | Various | | | Section 39- | Section 39- | | | | | | 1.02D | 1.02D | | Crumb rubber modifier | Various | | | Section 39- | Section 39- | | | | | | 1.02D | 1.02D | ^a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9. No single test result may represent more than the smaller of 750 tons or 1 day's production. For any single quality characteristic except smoothness, if 2 consecutive acceptance test results do not comply with the specifications: - 1. Stop production. - 2. Take corrective action. - 3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts. - 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway. # 39-3.03 SPREADING AND COMPACTING EQUIPMENT Each paver spreading HMA Type A and Type B must be followed by 3 rollers: - 1. One vibratory roller specifically designed to compact HMA. The roller must be capable of at least 2,500 vibrations per minute and must be equipped with amplitude and frequency controls. The roller's gross static weight must be at least 7.5 tons. - 2. One oscillating type pneumatic-tired roller at least 4 feet wide. Pneumatic tires must be of equal size, diameter, type, and ply. The tires must be inflated to 60 psi minimum and maintained so that the air pressure does not vary more than 5 psi. - 3. One steel-tired, 2-axle tandem roller. The roller's gross static weight must be at least 7.5 tons. Each roller must have a separate operator. Rollers must be self-propelled and reversible. Compact RHMA-G under the specifications for compacting HMA Type A and Type B except do not use pneumatic-tired rollers. ^b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate." ^c The Engineer reports the average of 3 tests from a single split sample. ^d Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ± 5 °F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours." ^e The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309. ^fReport only if the adjustment for asphalt binder content target value is less than or equal to \pm 0.3 percent from OBC ^g Voids in mineral aggregate for RHMA-G must be within this range. Compact OGFC with steel-tired, 2-axle tandem rollers. If placing over 300 tons of OGFC per hour, use at least 3 rollers for each paver. If placing less than 300 tons of OGFC per hour, use at least 2 rollers for each paver. Each roller must weigh between 126 pounds to 172 pounds per linear inch of drum width. Turn the vibrator off. # 39-3.04 TRANSPORTING, SPREADING, AND COMPACTING Pave HMA in maximum 0.25-foot thick compacted layers. If the surface to be paved is both in sunlight and shade, pavement surface temperatures are taken in the shade. Spread HMA Type A and Type B only if atmospheric and surface temperatures are: **Minimum Atmospheric and Surface Temperatures** | Compacted Layer | | | | | |-----------------|--------------------|---------------------|--------------------|---------------------| | Thickness, feet | Atmospheric,° F | | Surface,° F | | | | Unmodified Asphalt | Modified Asphalt | Unmodified Asphalt | Modified Asphalt | | | Binder | Binder ^a | Binder | Binder ^a | | < 0.15 | 55 | 50 | 60 | 55 | | 0.15 - 0.25 | 45 | 45 | 50 | 50 | Note: If the asphalt binder for HMA Type A and Type B is: # 1. Unmodified asphalt binder, complete: - 1.1. First coverage of breakdown compaction before the surface temperature drops below 250 °F - 1.2. Breakdown and intermediate compaction before the surface temperature drops below 200 °F - 1.3. Finish compaction before the surface temperature drops below 150 °F # 2. Modified asphalt binder, complete: - 2.1. First coverage of breakdown compaction before the surface temperature drops below 240 °F - 2.2. Breakdown and intermediate compaction before the surface temperature drops below 180 °F - 2.3. Finish compaction before the surface temperature drops below 140 °F #### For RHMA-G: - 1. Only spread and compact if the atmospheric temperature is at least 55 °F and the surface temperature is at least 60 °F. - 2. Complete the first coverage of breakdown compaction before the surface temperature drops below $280\ ^{\circ}\text{F}.$ - 3. Complete breakdown and intermediate compaction before the surface temperature drops below 250 °F. ^a Except asphalt rubber binder. - 4. Complete finish compaction before the surface temperature drops below 200 °F. - 5. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface. # For OGFC with unmodified asphalt binder: - 1. Only spread and compact if the atmospheric temperature is at least 55 °F and the surface temperature is at least 60 °F. - 2. Complete first coverage using 2 rollers before the surface temperature drops below 240 °F - 3. Complete all compaction before the surface temperature drops below 200 °F. - 4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface. # For OGFC with modified asphalt binder except asphalt rubber binder: - 1. Only spread and compact if the atmospheric temperature is at least 50 °F and the surface temperature is at least 50 °F. - 2. Complete first coverage using 2 rollers before the surface temperature drops below 240 °F - 3. Complete all compaction before the
surface temperature drops below 180 °F. - 4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver's hopper or to the pavement surface. #### For RHMA-O and RHMA-O-HB: - 1. Only spread and compact if the atmospheric temperature is at least 55 °F and surface temperature is at least 60 °F. - 2 Complete the 1st coverage using 2 rollers before the surface temperature drops below 280 °F. - 3. Complete compaction before the surface temperature drops below 250 °F. - 4. If the atmospheric temperature is below 70 °F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until the mixture is transferred to the paver's hopper or to the pavement surface. For RHMA-G and OGFC, tarpaulins are not required if the time from discharge to truck until transfer to the paver's hopper or the pavement surface is less than 30 minutes. HMA compaction coverage is the number of passes needed to cover the paving width. A pass is 1 roller's movement parallel to the paving in either direction. Overlapping passes are part of the coverage being made and are not a subsequent coverage. Do not start a coverage until completing the prior coverage. Start rolling at the lower edge and progress toward the highest part. Perform breakdown compaction of each layer of HMA Type A, Type B, and RHMA-G with 3 coverages using a vibratory roller. The speed of the vibratory roller in miles per hour must not exceed the vibrations per minute divided by 1,000. If the HMA layer thickness is less than 0.08 foot, turn the vibrator off. The Engineer may order fewer coverages if the HMA layer thickness is less than 0.15 foot. Perform intermediate compaction of each layer of HMA Type A and Type B with 3 coverages using a pneumatic-tired roller at a speed not to exceed 5 mph. Perform finish compaction of HMA Type A, Type B, and RHMA-G with 1 coverage using a steel-tired roller. Compact OGFC with 2 coverages using steel-tired rollers. # 39-4 QUALITY CONTROL / QUALITY ASSURANCE # 39-4.01 DESCRIPTION If HMA is specified as Quality Control / Quality Assurance, construct it under Section 39-1, "General," this Section 39-4, "Quality Control / Quality Assurance," and Section 39-5, "Measurement and Payment." #### **39-4.02 GENERAL** The QC / QA construction process consists of: - 1. Establishing, maintaining, and changing if needed a quality control system providing assurance the HMA complies with the specifications - 2. Sampling and testing at specified intervals, or sublots, to demonstrate compliance and to control process - 3. The Engineer sampling and testing at specified intervals to verify testing process and HMA quality - 4. The Engineer using test results, statistical evaluation of verified quality control tests, and inspection to accept HMA for payment A lot is a quantity of HMA. The Engineer designates a new lot when: - 1. 20 sublots are complete - 2. The JMF changes - 3. Production stops for more than 30 days Each lot consists of no more than 20 sublots. A sublot is 750 tons except HMA paved at day's end greater than 250 tons is a sublot. If HMA paved at day's end is less than 250 tons, you may either make this quantity a sublot or include it in the previous sublot's test results for statistical evaluation. # 39-4.03 CONTRACTOR QUALITY CONTROL #### **39-4.03A** General Use a composite quality factor, QF_C , and individual quality factors, QF_{QCi} , to control your process and evaluate your quality control program. For quality characteristics without quality factors, use your quality control plan's action limits to control process. ## Control HMA quality including: - 1. Materials - 2. Proportioning - 3. Spreading and compacting - 4. Finished roadway surface Develop, implement, and maintain a quality control program that includes: - 1. Inspection - 2. Sampling - 3. Testing ## 39-4.03B Quality Control Plan With the JMF submittal, submit a written Quality Control Plan (QCP). The QCP must comply with the Department's Quality Control Manual for Hot Mix Asphalt Production and Placement. Discuss the QCP with the Engineer during the prepaving conference. The Engineer reviews each QCP within 5 business days from the submittal. Hold HMA production until the Engineer accepts the QCP in writing. The Engineer's QCP acceptance does not mean your compliance with the QCP will result in acceptable HMA. Section 39-1.05, "Engineer's Acceptance," specifies HMA acceptance. The QCP must include the name and qualifications of a Quality Control Manager. The Quality Control Manager administers the QCP and during paving must be at the job site within 3 hours of receiving notice. The Quality Control Manager must not be any of the following on the project: - 1. Foreman - 2. Production or paving crewmember - 3. Inspector - 4. Tester The QCP must include action limits and details of corrective action you will take if a test result for any quality characteristic falls outside an action limit. As work progresses, you must submit a written QCP supplement to change quality control procedures, personnel, tester qualification status, or laboratory accreditation status. ## 39-4.03C Quality Control Inspection, Sampling, And Testing Sample, test, inspect, and manage HMA quality control. Provide a roadway inspector while HMA paving activities are in progress. Provide a plant inspector during HMA production. Inspectors must comply with the Department's Quality Control Manual for Hot Mix Asphalt Production and Placement. Provide a testing laboratory and personnel for quality control testing. Provide the Engineer unrestricted access to the quality control activities. Before providing services for the project, the Engineer reviews, accredits, and qualifies the testing laboratory and personnel under the Department's Independent Assurance Program. The minimum random sampling and testing for quality control is: Minimum Quality Control – QC / QA | Minimum Quality Control – QC / QA Ovelity Test Min JIMA Type Leastion May | | | | | | | | | | | |--|---------------------|--|----------------------|---------------------------------|----------------------|--|---------------------------------|--|--|--| | Quality
Characteristic | Test
Method | Min-
imum
Sampl-
ing and
Testing | | НМА Туре | | Location
of
Sampling | Max. Reporting Time Allow- ance | | | | | | | Frequen -cy | A | В | RHMA-G | | | | | | | Aggregate gradation ^a | CT 202 | | JMF ±
Tolerance b | JMF ±
Tolerance ^b | JMF ±
Tolerance b | CT 125 | | | | | | Asphalt binder content (%) | CT 379 or 382 | 1 per
750 tons | JMF ±0.45 | JMF ±0.45 | JMF ±0.5 | Loose
Mix
Behind
Paver
See CT
125 | 24 hours | | | | | Percent of maximum theoretical density (%) c, d | QC Plan | | 92 - 96 | 92 - 96 | 91 - 96 | QC Plan | | | | | | Aggregate moisture content at continuous mixing plants and RAP moisture content at continuous mixing plants and batch mixing plants ^e | CT 226 or
CT 370 | 2 per
day
during
produc-
tion | | | | Stock-
piles or
cold feed
belts | | | | | | Sand equivalent (min.) ^f | CT 217 | 1 per
750 tons | 47 | 42 | 47 | CT 125 | 24 hours | | | | | HMA moisture content (%,max.) | CT 226 or
CT 370 | 1 per
2,500
tons but
not less
than 1
per
paving
day | 1.0 | 1.0 | 1.0 | Loose
Mix
Behind | 24 hours | | | | | Stabilometer Value (min.) f, g No. 4 and 3/8" gradings 1/2" and 3/4" gradings | CT 366 | 1 per
4,000
tons or
2 per 5
bus-
iness | 30
37 | 30
35 | 23 | Paver
See CT
125 | 48 hours | | | | | Air voids content (%) ^{f, h} | CT 367 | days,
which-
ever is
more | 4 ± 2 | 4 ± 2 | Specification ± 2 | | | | | | | Percent of crushed | | | | | | | | |----------------------|----------|--------------------|-------------|-------------|-------------------|----------|----------| | particles coarse | | | | | | | | | aggregate (% min.) | | | | | | | | | One fractured | | | | | | | | | face | | | 90 | 25 | | | | | Two fractured | | | | | | | | | faces | | | 75 | | 90 | | | | Fine aggregate (% | CT 205 | | | | | CT 125 | | | min) | | | | | | | | | (Passing No. 4 | | | | | | | | | sieve and | | | | | | | | | retained on No. | | | | | | | | | 8 sieve.) | | | | | | | | | One fractured | | | 70 | 20 | 70 | | | | face | | | | | | | | | Los Angeles Rattler | | | | | | | | | (% max.) | CT 211 | A . | | | | CT 125 | | | Loss at 100 rev. | CT 211 | As | 12 | | 12 | C1 125 | | | Loss at 500 rev. | | neces- | 45 | 50 | 40 | | | | Eina aggragata | AASHTO | sary and | | | | | | | Fine aggregate | Т 304, | designat
-ed in | 45 | 45 | 45 | CT 125 | | | angularity (% min.) | Method A | | | | | | | | Flat and elongated | ASTM D | QCP.
At least | Report | Report | Report | | | | particle (% max. by | 4791 | | only | only | only | CT 125 | 48 hours | | weight @ 5:1) | 4/91 | once per project. | | | | | 48 Hours | | Voids filled with | | project. | | | | | | | asphalt (%) i | | | | | | | | | No. 4 grading | LP-3 | | 76.0 - 80.0 | 76.0 - 80.0 | Report only | LP-3 | | | 3/8" grading | L1 -3 | | 73.0 - 76.0 | 73.0 - 76.0 | | L1 -5 | | | 1/2" grading | | | 65.0 - 75.0 | 65.0 - 75.0 | | | | | 3/4" grading | | | 65.0 - 75.0 | 65.0 - 75.0 | | | | | Voids in mineral | | | | | | | | | aggregate (% min.) i | | | | | | | | | No. 4 grading | LP-2 | | 17.0 | 17.0 | | LP-2 | | | 3/8" grading | | | 15.0 | 15.0 | : | L1 2 | | | 1/2" grading | | | 14.0 | 14.0 | $18.0 - 23.0^{j}$ | | | | 3/4" grading | | | 13.0 | 13.0 | $18.0 - 23.0^{j}$ | | | | Dust proportion i | | | | | | | | | No. 4 and 3/8" | | | 0.9 - 2.0 | 0.9 - 2.0 | Report only | | | |
gradings | LP-4 | | 0.6 - 1.3 | 0.6 - 1.3 | | LP-4 | | | 1/2" and 3/4" | | | | | | | | | gradings | | | | | | | | | Smoothness | | | 12-foot | 12-foot | 12-foot | | | | | | | straight- | straight- | straight- | | | | | Section | | edge, | edge, must- | edge, must- | | | | | 39-1.12 | | must- | grind, and | grind, and | | | | | | | grind, and | PI_0 | PI_0 | | | | A amb alt mul-l | | | PI_0 | Ŭ | Ŭ | | | | Asphalt rubber | Section | | | | 1,500 - | Section | 24 h | | binder viscosity @ | 39-1.02D | | | | 4,000 | 39-1.02D | 24 hours | | 350 °F, centipoises | Cooties | | | | Santis = 20 | Castina | 10 h | | Crumb rubber | Section | | | | Section 39- | Section | 48 hours | | modifier Notes: | 39-1.02D | | | | 1.02D | 39-1.02D | | Notes: ^a Determine combined aggregate gradation containing RAP under Laboratory Procedure LP-9. Within the specified reporting time, submit written test results including: - 1. Sampling location, quantity, and time - 2. Testing results - 3. Supporting data and calculations If test results for any quality characteristic are beyond the action limits in the QCP, take corrective actions. Document the corrective actions taken in the inspection records under Section 39-4.03E, "Records of Inspection and Testing." Stop production, notify the Engineer in writing, take corrective action, and demonstrate compliance with the specifications before resuming production and placement on the State highway if: - 1. A lot's composite quality factor, Q_{FC} , or an individual quality factor, QF_{QCi} for i=3,4, or 5, is below 0.90 determined under Section 39-4.03F, "Statistical Evaluation" - 2. An individual quality factor, QF_{OCi} for i = 1 or 2, is below 0.75 - 3. Quality characteristics for which a quality factor, QF_{QCi}, is not determined has 2 consecutive acceptance or quality control tests not in compliance with the specifications #### 39-4.03D Charts And Records Record sampling and testing results for quality control on forms provided in the "Quality Control Manual for Hot Mix Asphalt," or on forms you submit with the QCP. The QCP must also include form posting locations and submittal times. Submit quality control test results using the Department's statistical evaluation program, HMAPay, available at www.dot.ca.gov/hq/construc/hma/index.htm ## 39-4.03E Records Of Inspection And Testing During HMA production, submit in writing a daily: 1. HMA Construction Daily Record of Inspection. Also make this record available at the HMA plant and job site each day. ^b The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate." ^c Required for HMA Type A, Type B, and RHMA-G if the specified paved thickness is at least 0.15 foot. ^d Determine maximum theoretical density (California Test 309) at the frequency specified for test maximum density under California Test 375, Part 5 D. ^e For adjusting the plant controller at the HMA plant. f Report the average of 3 tests from a single split sample. ^g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to $140 \, ^{\circ}\text{F} \pm 5 \, ^{\circ}\text{F}$ by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at $140 \, ^{\circ}\text{F}$ for a minimum of 2 hours and not more than 3 hours." ^h Determine the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309. ⁱ Report only if the adjustment for asphalt binder content target value is less than or equal to \pm 0.3 percent from OBC. ^j Voids in mineral aggregate for RHMA-G must be within this range. - 2. HMA Inspection and Testing Summary. Include in the summary: - 2.1. Test forms with the testers' signatures and Quality Control Manager's initials. - 2.2. Inspection forms with the inspectors' signatures and Quality Control Manager's initials. - 2.3. A list and explanation of deviations from the specifications or regular practices. - 2.4. A signed statement by the Quality Control Manager that says: "It is hereby certified that the information contained in this record is accurate, and that information, tests, or calculations documented herein comply with the specifications of the contract and the standards set forth in the testing procedures. Exceptions to this certification are documented as part of this record." Retain for inspection the records generated as part of quality control including inspection, sampling, and testing for at least 3 years after final acceptance. #### 39-4.03F Statistical Evaluation #### General Determine a lot's composite quality factor, QF_C, and the individual quality factors, QF_{QCi}. Perform statistical evaluation calculations to determine these quality factors based on quality control test results for: - 1. Aggregate gradation - 2. Asphalt binder content - 3. Percent of maximum theoretical density The Engineer grants a waiver and you must use 1.0 as the individual quality factor for percent of maximum theoretical density, QF_{OC5} , for HMA paved in: - 1. Areas where the specified paved thickness is less than 0.15 foot - 2. Areas where the specified paved thickness is less than 0.20 foot and a 3/4-inch grading is specified and used - 3. Dig outs - 4. Leveling courses - 5. Areas where, in the opinion of the Engineer, compaction or compaction measurement by conventional methods is impeded ## **Statistical Evaluation Calculations** Use the Variability-Unknown / Standard Deviation Method to determine the percentage of a lot not in compliance with the specifications. The number of significant figures used in the calculations must comply with AASHTO R-11, Absolute Method. Determine the percentage of work not in compliance with the specification limits for each quality characteristic as follows: 1. Calculate the arithmetic mean (X) of the test values $$\bar{X} = \frac{\sum X}{n}$$ x = individual test valuesn = number of test values 2. Calculate the standard deviation $$S = \sqrt{\frac{n(\Sigma x^2) - (\Sigma x)^2}{n(n-1)}}$$ where: $\sum (x^2) = \sup$ of the squares of individual test values $(\sum x)^2 = \sup$ of the individual test values squared $n = \sup$ number of test values 3. Calculate the upper quality index (Qu) $$Q_u = \frac{USL - \overline{X}}{S}$$ where: $\begin{array}{ll} USL = & target \ value \ plus \ the \ production \ tolerance \ or \ upper \ specification \ limit \\ s = & standard \ deviation \\ \overline{X} = & arithmetic \ mean \end{array}$ 4. Calculate the lower quality index (QL); $$Q_L = \frac{\overline{X} - LSL}{s}$$ where: $\begin{array}{ll} LSL = & target \ value \ minus \ production \ tolerance \ or \ lower \ specification \ limit \\ s = & standard \ deviation \\ \hline X = & arithmetic \ mean \\ \end{array}$ 5. From the table, Upper Quality Index Q_U or Lower Quality Index Q_L , of this Section 39-4.03F, "Statistical Evaluation", determine P_U ; where: P_U = the estimated percentage of work outside the USL. P_U = 0, when USL is not specified. 6. From the table, Upper Quality Index Q_U or Lower Quality Index Q_L , of this Section 39-4.03F, "Statistical Evaluation," determine P_L ; $P_L =$ the estimated percentage of work outside the LSL. $P_L = 0$, when LSL is not specified. 7. Calculate the total estimated percentage of work outside the USL and LSL, percent defective Percent defective = $P_U + P_L$ P_U and P_L are determined from: | \mathbf{P}_U | | Upper Quality Index Q_U or Lower Quality Index Q_L
Sample Size (n) | | | | | | | | | | | | |------------------|--------------|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | \mathbf{P}_{L} | 5 | 6 | 7 | 8 | 9 | 10-11 | 12-14 | (n)
15-17 | 18-22 | 23-29 | 30-42 | 43-66 | >66 | | 0 | 1.72 | 1.88 | 1.99 | 2.07 | 2.13 | 2.20 | 2.28 | 2.34 | 2.39 | 2.44 | 2.48 | 2.51 | 2.56 | | | 1.72 | 1.75 | 1.82 | 1.88 | 1.91 | 1.96 | 2.28 | 2.04 | 2.39 | 2.44 | 2.48 | 2.31 | 2.36 | | 1 | 1.58 | 1.75 | 1.72 | 1.75 | 1.78 | 1.90 | 1.84 | 1.87 | 1.89 | 1.91 | 1.93 | 1.94 | 1.95 | | 2 3 | 1.58 | 1.59 | 1.72 | 1.75 | 1.78 | 1.71 | 1.73 | 1.75 | 1.76 | 1.78 | 1.79 | 1.94 | 1.93 | | 4 | 1.32 | 1.59 | 1.56 | 1.58 | 1.60 | 1.62 | 1.73 | 1.65 | 1.66 | 1.78 | 1.68 | 1.69 | 1.70 | | 5 | 1.47 | 1.47 | 1.49 | 1.51 | 1.52 | 1.54 | 1.55 | 1.56 | 1.57 | 1.58 | 1.59 | 1.59 | 1.60 | | 6 | 1.38 | 1.41 | 1.43 | 1.45 | 1.46 | 1.47 | 1.48 | 1.49 | 1.50 | 1.50 | 1.51 | 1.51 | 1.52 | | 7 | 1.33 | 1.36 | 1.43 | 1.43 | 1.40 | 1.41 | 1.40 | 1.49 | 1.43 | 1.43 | 1.44 | 1.44 | 1.44 | | 8 | 1.29 | 1.31 | 1.33 | 1.33 | 1.34 | 1.35 | 1.35 | 1.36 | 1.45 | 1.43 | 1.37 | 1.37 | 1.38 | | 9 | 1.25 | 1.27 | 1.28 | 1.28 | 1.29 | 1.29 | 1.30 | 1.30 | 1.30 | 1.31 | 1.31 | 1.31 | 1.31 | | 10 | 1.23 | 1.23 | 1.23 | 1.24 | 1.24 | 1.24 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.26 | 1.26 | | 11 | 1.18 | 1.18 | 1.19 | 1.19 | 1.19 | 1.19 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | | 12 | 1.14 | 1.14 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | | 13 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 | | 14 | 1.07 | 1.07 | 1.07 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | | 15 | 1.03 | 1.03 | 1.03 | 1.03 | 1.02 | 1.02 | 1.00 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | | 16 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | 17 | 0.97 | 0.96 | 0.95 | 0.95 | 0.95 | 0.95 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | 18 | 0.93 | 0.92 | 0.92 | 0.92 | 0.91 | 0.91 | 0.91 | 0.91 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 19 | 0.90 | 0.89 | 0.88 | 0.88 | 0.88 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | | 20 | 0.87 | 0.86 | 0.85 | 0.85 | 0.84 | 0.84 | 0.84 | 0.83 |
0.83 | 0.83 | 0.83 | 0.83 | 0.83 | | 21 | 0.84 | 0.82 | 0.82 | 0.81 | 0.81 | 0.81 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.79 | | 22 | 0.81 | 0.79 | 0.79 | 0.78 | 0.78 | 0.77 | 0.77 | 0.77 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | | 23 | 0.77 | 0.76 | 0.75 | 0.75 | 0.74 | 0.74 | 0.74 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | | 24 | 0.74 | 0.73 | 0.72 | 0.72 | 0.71 | 0.71 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | | 25 | 0.71 | 0.70 | 0.69 | 0.69 | 0.68 | 0.68 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.66 | | 26 | 0.68 | 0.67 | 0.67 | 0.65 | 0.65 | 0.65 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.63 | | 27 | 0.65 | 0.64 | 0.63 | 0.62 | 0.62 | 0.62 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.60 | | 28 | 0.62 | 0.61 | 0.60 | 0.59 | 0.59 | 0.59 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.57 | | 29 | 0.59 | 0.58 | 0.57 | 0.57 | 0.56 | 0.56 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.54 | | 30 | 0.56 | 0.55 | 0.54 | 0.54 | 0.53 | 0.53 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | | 31 | 0.53 | 0.52 | 0.51 | 0.51 | 0.50 | 0.50 | 0.50 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | | 32 | 0.50 | 0.49 | 0.48 | 0.48 | 0.48 | 0.47 | 0.47 | 0.47 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | | 33 | 0.47 | 0.48 | 0.45 | 0.45 | 0.45 | 0.44 | 0.44 | 0.44 | 0.44 | 0.43 | 0.43 | 0.43 | 0.43 | | 34 | 0.45 | 0.43 | 0.43 | 0.42 | 0.42 | 0.42 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.40 | | 35 | 0.42 | 0.40 | 0.40 | 0.39 | 0.39 | 0.39 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | | 36 | 0.39 | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | | 37 | 0.36 | 0.35 | 0.34 | 0.34 | 0.34 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.32 | | 38 | 0.33 | 0.32 | 0.32 | 0.31 | 0.31 | 0.31 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | | 39 | 0.30 | 0.30 | 0.29 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | | 40 | 0.28 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | | 41 | 0.25 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | | 42 | 0.23 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | | 43 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18
0.15 | | 44
45 | 0.16
0.13 | 0.15
0.13 0.15 | | 45 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | 46 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 48 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 49 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | 50 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | | | 0.00 | | | | | | | the nex | | | 0.00 | 0.00 | ^{1.} If the value of Q_U or Q_L does not correspond to a value in the table, use the next lower value. 2. If Q_U or Q_L are negative values, P_U or P_L is equal to 100 minus the table value for P_U or P_L . ## **Quality Factor Determination** Determine individual quality factors, QF_{QCi} , using percent defective = $P_U + P_L$ and: **Ouality Factors** | Quality | | | | IVIAX | IIIIuIII A | | ple Size | | ive (F _U | + F _L) | | | | |---------|--|----|----|-------|------------|-------|----------|-------|---------------------|---------------------------|-------|-------|-----| | Factor | 5 | 6 | 7 | 8 | 9 | 10-11 | 12-14 | 15-17 | 18-22 | 23-29 | 30-42 | 43-66 | >66 | | 1.05 | 3 | 0 | , | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1.03 | | | 0 | 1 | 3 | 5 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | | 1.04 | | 0 | 2 | 4 | 6 | 8 | 7 | 7 | 6 | 5 | 5 | 4 | 4 | | 1.03 | | 1 | 3 | 6 | 9 | 11 | 10 | 9 | 8 | 7 | 7 | 6 | 6 | | 1.02 | 0 | 2 | 5 | 8 | 11 | 13 | 12 | 11 | 10 | 9 | 8 | 8 | 7 | | 1.00 | 22 | 20 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | 0.99 | 24 | 22 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 11 | 10 | 9 | | 0.98 | 26 | 24 | 22 | 21 | 20 | 19 | 18 | 16 | 15 | 14 | 13 | 12 | 10 | | 0.97 | 28 | 26 | 24 | 23 | 22 | 21 | 19 | 18 | 17 | 16 | 14 | 13 | 12 | | 0.96 | 30 | 28 | 26 | 25 | 24 | 22 | 21 | 19 | 18 | 17 | 16 | 14 | 13 | | 0.95 | 32 | 29 | 28 | 26 | 25 | 24 | 22 | 21 | 20 | 18 | 17 | 16 | 14 | | 0.94 | 33 | 31 | 29 | 28 | 27 | 25 | 24 | 22 | 21 | 20 | 18 | 17 | 15 | | 0.93 | 35 | 33 | 31 | 29 | 28 | 27 | 25 | 24 | 22 | 21 | 20 | 18 | 16 | | 0.92 | 37 | 34 | 32 | 31 | 30 | 28 | 27 | 25 | 24 | 22 | 21 | 19 | 18 | | 0.91 | 38 | 36 | 34 | 32 | 31 | 30 | 28 | 26 | 25 | 24 | 22 | 21 | 19 | | 0.90 | 39 | 37 | 35 | 34 | 33 | 31 | 29 | 28 | 26 | 25 | 23 | 22 | 20 | | 0.89 | 41 | 38 | 37 | 35 | 34 | 32 | 31 | 29 | 28 | 26 | 25 | 23 | 21 | | 0.88 | 42 | 40 | 38 | 36 | 35 | 34 | 32 | 30 | 29 | 27 | 26 | 24 | 22 | | 0.87 | 43 | 41 | 39 | 38 | 37 | 35 | 33 | 32 | 30 | 29 | 27 | 25 | 23 | | 0.86 | 45 | 42 | 41 | 39 | 38 | 36 | 34 | 33 | 31 | 30 | 28 | 26 | 24 | | 0.85 | 46 | 44 | 42 | 40 | 39 | 38 | 36 | 34 | 33 | 31 | 29 | 28 | 25 | | 0.84 | 47 | 45 | 43 | 42 | 40 | 39 | 37 | 35 | 34 | 32 | 30 | 29 | 27 | | 0.83 | 49 | 46 | 44 | 43 | 42 | 40 | 38 | 36 | 35 | 33 | 31 | 30 | 28 | | 0.82 | 50 | 47 | 46 | 44 | 43 | 41 | 39 | 38 | 36 | 34 | 33 | 31 | 29 | | 0.81 | 51 | 49 | 47 | 45 | 44 | 42 | 41 | 39 | 37 | 36 | 34 | 32 | 30 | | 0.80 | 52 | 50 | 48 | 46 | 45 | 44 | 42 | 40 | 38 | 37 | 35 | 33 | 31 | | 0.79 | 54 | 51 | 49 | 48 | 46 | 45 | 43 | 41 | 39 | 38 | 36 | 34 | 32 | | 0.78 | 55 | 52 | 50 | 49 | 48 | 46 | 44 | 42 | 41 | 39 | 37 | 35 | 33 | | 0.77 | 56 | 54 | 52 | 50 | 49 | 47 | 45 | 43 | 42 | 40 | 38 | 36 | 34 | | 0.76 | 57 | 55 | 53 | 51 | 50 | 48 | 46 | 44 | 43 | 41 | 39 | 37 | 35 | | 0.75 | 58 | 56 | 54 | 52 | 51 | 49 | 47 | 46 | 44 | 42 | 40 | 38 | 36 | | | 60 | 57 | 55 | 53 | 52 | 51 | 48 | 47 | 45 | 43 | 41 | 40 | 37 | | | 61 | 58 | 56 | 55 | 53 | 52 | 50 | 48 | 46 | 44 | 43 | 41 | 38 | | Reject | 62 | 59 | 57 | 56 | 54 | 53 | 51 | 49 | 47 | 45 | 44 | 42 | 39 | | | 63 | 61 | 58 | 57 | 55 | 54 | 52 | 50 | 48 | 47 | 45 | 43 | 40 | | | 64 | 62 | 60 | 58 | 57 | 55 | 53 | 51 | 49 | 48 | 46 | 44 | 41 | | | Reject Values Greater Than Those Shown Above | | | | | | | | | | | | | ## Notes: 1. To obtain a quality factor when the estimated percent outside specification limits from table, "Upper Quality Index Q_U or Lower Quality Index Q_L ," does not correspond to a value in the table, use the next larger value. Compute the composite of single quality factors, QF_C, for a lot using: $$QF_C = \sum_{i=1}^{5} w_i QF_{QC_i}$$ $QF_C =$ the composite quality factor for the lot rounded to 2 decimal places. $QF_{OCi} =$ the quality factor for the individual quality characteristic. the weighting factor listed in the table HMA Acceptance – QC / QA. $\mathbf{w} =$ i = the quality characteristic index number in the table HMA Acceptance - QC / QA. ## 39-4.04 ENGINEER'S QUALITY ASSURANCE #### **39-4.04A** General The Engineer assures quality by: 1. Reviewing mix designs and proposed JMF - 2. Inspecting procedures - 3. Conducting oversight of quality control inspection and records - 4. Verification sampling and testing during production and paving ## 39-4.04B Verification Sampling And Testing #### General The Engineer samples: - 1. Aggregate to verify gradation - 2. HMA to verify asphalt binder content #### Verification For aggregate gradation and asphalt binder content, the ratio of verification testing frequency to the minimum quality control testing frequency is 1:5. The Engineer performs at least 3 verification tests per lot. Using the t-test, the Engineer compares quality control tests results for aggregate gradation and asphalt binder content with corresponding verification test results. The Engineer uses the average and standard deviation of up to 20 sequential sublots for the comparison. The Engineer uses production start-up evaluation tests to represent the first sublot. When there are less than 20 sequential sublots, the Engineer uses the maximum number of sequential sublots available. The 21st sublot becomes the 1st sublot (n = 1) in the next lot. The t-value for a group of test data is computed as follows: $$t = \frac{\overline{X_c} - \overline{X_v}|}{S_p \sqrt{\frac{1}{n_c} + \frac{1}{n_v}}}$$ and $$S_p^2 = \frac{S_c^2(n_c - 1) + S_v^2(n_v - 1)}{n_c + n_v - 2}$$ where: Number of quality control tests (2 minimum, 20 maximum). $n_v = Number of verification tests (minimum of 1 required).$ \dot{X}_c Mean of quality control tests. = X_{ν} Mean of verification tests. = $S_p =$ Pooled standard deviation (When $n_v = 1$, $S_p = S_c$). S_c = Standard deviation of quality control tests. $S_{\nu} = S$ tandard deviation of verification tests (when $n_{\nu} > 1$). The comparison of quality control test results and the verification test results is at a level of significance of $\alpha = 0.025$. The Engineer computes t and compares it to the critical t-value, t_{crit}, from: **Critical T-Value** | Degrees of freedom | | | t_{crit} | | |--------------------|--------------------------------|---------------|-------------------------|--| | (n_c+n_v-2) | $(\text{for } \alpha = 0.025)$ | (n_c+n_v-2) | (for $\alpha = 0.025$) | | | 1 | 24.452 | 18 | 2.445 | | | 2 | 6.205 | 19 | 2.433 | | | 3 | 4.177 | 20 | 2.423 | | | 4 | 3.495 | 21 | 2.414 | | | 5 | 3.163 | 22 | 2.405 | | | 6 | 2.969 | 23 | 2.398 | | | 7 | 2.841 | 24 | 2.391 | | | 8 | 2.752 | 25 | 2.385 | | | 9 | 2.685 | 26 | 2.379 | | | 10 | 2.634 | 27 | 2.373 | | | 11 | 2.593 | 28 | 2.368 | | | 12 | 2.560 | 29 | 2.364 | | | 13 | 2.533 | 30 | 2.360 | | | 14 | 2.510 | 40 | 2.329 | | | 15 | 2.490 | 60 | 2.299 | | | 16 | 2.473 | 120 | 2.270 | | | 17 | 2.458 | ∞ | 2.241 | | If the t-value computed is less than or equal to t_{crit} , quality control test results are verified. If the t-value computed is greater than t_{crit} and both X_{ν} and X_{c} comply with
acceptance specifications, the quality control tests are verified. You may continue to produce and place HMA with the following allowable differences: 1. $$\left| \overline{X}_{v} - \overline{X}_{c} \right| \leq 1.0$$ percent for any grading 2. $$|\overline{X}_v - \overline{X}_c| \le 0.1$$ percent for asphalt binder content If the t-value computed is greater than t_{crit} and the $|\overline{X}_{v} - \overline{X}_{c}|$ for grading and asphalt binder content are greater than the allowable differences, quality control test results are not verified and: 1. The Engineer notifies you in writing. - 2. You and the Engineer must investigate why the difference exist. - 3. If the reason for the difference cannot be found and corrected, the Engineer's test results are used for acceptance and pay. # 39-4.05 ENGINEER'S ACCEPTANCE # **39-4.05A** Testing The Engineer samples for acceptance testing and tests for: HMA Acceptance – QC / QA | Index | 0 | uality Chai | racteristic | | Weight | Test | | | | |-------|--|--------------|---------------|---------|--------|-----------|-------------|------------------|---------------| | (i) | _ | danty ena | acteristic | | -ing | Method | | HMA Type | | | (1) | | | | | Factor | Wichiod | | | | | | | | | | (w) | | | | | | | | | | | (w) | | Α. | В | RHMA-G | | | Aggregate gradation ^a | | | | | | A | D | KHMA-G | | | | Aggreg | gate gradati | on " | | | | | | | | | | | | | | | | | | | Sieve | 3/4" | 1/2" | 3/8" | | | | | | | 1 | 1/2" | X^{b} | | | 0.05 | CT 202 | 11 | MF ± Tolerance | c | | 1 | 3/8" | | X | | 0.05 | C1 202 | JI | VII' ± 10161ance | | | 1 | No. 4 | | | X | 0.05 |] | | | | | 2 | No. 8 | X | X | X | 0.10 | | | | | | 3 | No. 200 | X | X | X | 0.15 | 1 | | | | | 4 | | inder conte | | - 11 | 0.30 | CT 379 or | JMF ± 0.45 | JMF ± 0.45 | $JMF \pm 0.5$ | | - | Aspilate of | inder conte | III (70) | | 0.50 | 382 | JWII ± 0.43 | JIVII ± 0.43 | JIVII ± 0.5 | | 5 | Dorgant of | movimum | theoretical | 1 | 0.40 | CT 375 | 92 – 96 | 92 – 96 | 91 – 96 | | 3 | density (% | d, e | meorencai | l | 0.40 | C1 3/3 | 92 – 90 | 92 – 90 | 91 – 90 | | - | | | , \ f | | | CT 217 | 47 | 42 | 47 | | | | valent (mir | | | | CT 217 | 47 | 42 | 47 | | | | ter value (r | | | | CT 366 | | | | | | | and 3/8" g | | | | | 30 | 30 | | | | 1/2" and 3/4" gradings | | | | | | 37 | 35 | 23 | | | Air voids content (%) ^{f, h} | | | | | CT 367 | 4 ± 2 | 4 ± 2 | Specifica- | | | | | | | | | | | tion ± 2 | | | Percent of | crushed pa | articles coa | rse | | CT 205 | | | | | | aggregate | (% min.) | | | | | | | | | | | ractured fa | ce | | | | 90 | 25 | | | | Two fractured faces | | | | | | 70 | | 90 | | | Fine aggregate (% min) | | | | | | | | | | | | | | etained | | | | | | | | (Passing No. 4 sieve and retained on No. 8 sieve.) | | | | | | | | | | | One fractured face | | | | | | 70 | 20 | 70 | | | | | ent (%, max | 7) | | CT 226 or | 1.0 | 1.0 | 1.0 | | | | isture conte | III (70, IIIa | ι.) | | CT 370 | 1.0 | 1.0 | 1.0 | | | T an Ameri | laa Da441aa | (0/) | | | | | | | | | | les Rattler | (% max.) | | | CT 211 | 10 | | 10 | | | | at 100 rev. | | | | | 12 | | 12 | | | | at 500 rev. | | | | | 45 | 50 | 45 | | | Fine aggre | egate angul | arity (% m | in.) | | AASHTO | 45 | 45 | 45 | | | | | | | | Т 304, | | | | | | | | | | | Method A | | | | | 1 | | | article (% n | nax. | | ASTM D | Report | Report | Report | | | by weight | | | | | 4791 | only | only | only | | | Voids in r | nineral agg | regate (% 1 | min.) i | | | | | (Note j) | | | | grading | | • | | | 17.0 | 17.0 | | | | 3/8" grading | | | | | LP-2 | 15.0 | 15.0 | | | | 1/2" grading | | | | | | 14.0 | 14.0 | 18.0 - 23.0 | | | | grading | | | | | 13.0 | 13.0 | 18.0 - 23.0 | | | | ed with asp | halt (%) i | | | | 15.0 | 15.0 | 10.0 20.0 | | | | grading | 11411 (70) | | | LP-3 | 76.0 - 80.0 | 76.0 - 80.0 | Report | | | | grading | | | | L1 -3 | 73.0 - 76.0 | 73.0 - 76.0 | only | | | | grading | | | | | 65.0 - 75.0 | 65.0 - 75.0 | Only | | | | | | | | | | | | | | | grading | | | | ID 4 | 65.0 - 75.0 | 65.0 - 75.0 | | | | Dust prop | | | | | LP-4 | 0.0.5.0 | 0.0.5.0 | | | | | and 3/8" g | | | | | 0.9 - 2.0 | 0.9 - 2.0 | Report | | | 1/2" a | and 3/4" gra | adings | | | | 0.6 - 1.3 | 0.6 - 1.3 | only | | Smoothness | | Section | 12-foot | 12-foot | 12-foot | |------------------------|--------|----------|-------------|-------------|------------| | | | 39-1.12 | straight- | straight- | straight- | | | | | edge, must- | edge, must- | edge, | | | | | grind, and | grind, and | must- | | | | | PI_0 | PI_0 | grind, and | | | | | | | PI_0 | | Asphalt binder | | Various | Section 92 | Section 92 | Section 92 | | | | | | | Section | | | | | | | 92- | | Asphalt rubber bin | der | Various | Various | | 1.02(C) | | 7 Aspirant Tubber bill | dei | various | | and | | | | | Various | | Section | | | | | | | | 39-1.02D | | Asphalt modifier | | Various | | | Section | | Aspirant mounter | | v arrous | | | 39-1.02D | | Crumb rubber mod | lifier | Various | | | Section | | Cramo rabber moe | milei | v arious | | | 39-1.02D | #### Notes: - 1. California Test 308, Method A, to determine in-place density of each density core instead of using the nuclear gauge in Part 4, "Determining In-Place Density By The Nuclear Density Device." - 2. California Test 309 to determine maximum theoretical density instead of calculating test maximum density in Part 5, "Determining Test Maximum Density." The Engineer determines the percent of maximum theoretical density from the average density of 3 density cores you take from every 750 tons of production or part thereof divided by the maximum theoretical density. If the specified total paved thickness is at least 0.15 foot and any layer is less than 0.15 foot, the Engineer determines the percent of maximum theoretical density from density cores taken from the final layer measured the full depth of the total paved HMA thickness. The Engineer stops production and terminates a lot if: - 1. The lot's composite quality factor, Q_{FC} , or an individual quality factor, QF_{QCi} for i=3,4, or 5, is below 0.90 determined under Section 39-4.03F, "Statistical Evaluation" - 2. An individual quality factor, QF_{OCi} for i = 1 or 2, is below 0.75 - 3. Quality characteristics for which a quality factor, QF_{QCi}, is not determined has 2 consecutive acceptance or quality control tests not in compliance with the specifications ^a The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9. ^b "X" denotes the sieves the Engineer considers for the specified aggregate gradation. ^c The tolerances must comply with the allowable tolerances in Section 39-1.02E, "Aggregate." ^d The Engineer determines percent of maximum theoretical density if the specified paved thickness is at least 0.15 foot under California Test 375 except the Engineer uses: ^e The Engineer determines maximum theoretical density (California Test 309) at the frequency specified for Test Maximum Density under California Test 375, Part 5.D. ^f The Engineer reports the average of 3 tests from a single split sample. ^g Modify California Test 304, Part 2.B.2.c: "After compaction in the mechanical compactor, cool to 140 °F ± 5 [°]F by allowing the briquettes to cool at room temperature for 0.5 hour, then place the briquettes in the oven at 140 °F for a minimum of 2 hours and not more than 3 hours." ^h The Engineer determines the bulk specific gravity of each lab-compacted briquette under California Test 308, Method A, and theoretical maximum specific gravity under California Test 309. ⁱReport only if the adjustment for asphalt binder content target value is less than or equal to \pm 0.3 percent from OBC. ^j Voids in mineral aggregate for RHMA-G must be within this range. For any single quality characteristic for which a quality factor, QF_{QCi}, is not determined, except smoothness, if 2 consecutive acceptance test results do not comply with specifications: - 1. Stop production. - 2. Take corrective action. - 3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts. - 4. Demonstrate compliance with the specifications before resuming production and placement on the State highway. # 39-4.05B Statistical Evaluation, Determination Of Quality Factors And Acceptance Statistical Evaluation and Determination of Quality Factors To determine the individual quality factor, QF_{QCi} , for any quality factor i=1 through 5 or a lot's composite quality factor, QF_C , for acceptance and payment adjustment, the Engineer uses the evaluation specifications under Section 39-4.03F, "Statistical Evaluation," and: - 1. Verified quality control test results for aggregate gradation - 2. Verified quality control test results for asphalt binder content - 3. The Engineer's test results for percent of maximum theoretical density ## **Lot Acceptance Based on Quality Factors** The Engineer accepts a lot based on the quality factors determined for aggregate gradation and asphalt binder content, QF_{QCi} for i = 1 through 4, using the total number of verified quality control test result values and the total percent defective $(P_U + P_L)$. The Engineer accepts a lot based on the quality factor determined for maximum theoretical density, QF_{QC5}, using the total number of test result values from density cores and the total percent defective $(P_U + P_L)$. The Engineer calculates the quality factor for the lot, QF_C , which is a composite of weighted individual quality factors, QF_{QCi} , determined for each quality characteristic in the HMA Acceptance – QC / QA table in Section 39-4.05A, "Testing." The Engineer accepts a lot based on quality factors if: - 1. The current composite quality factor, QF_C, is
0.90 or greater - 2. Each individual quality factor, QF_{OCi} for i = 3, 4, and 5, is 0.90 or greater - 3. Each individual quality factor, QF_{OCi} for i = 1 and 2, is 0.75 or greater No single quality characteristic test may represent more than the smaller of 750 tons or 1 day's production. ## **Payment Adjustment** If a lot is accepted, the Engineer adjusts payment with the following formula: $$PA = \sum_{i=1}^{n} HMACP * w_{i} * \left[FQC_{i} * (HMATT - WHMATT_{i}) + WHMATT_{i} \right] + WHMATT_{i}$$ PA = Payment adjustment rounded to 2 decimal places. HMACP = HMA contract price. HMATT = HMA total tons represented in the lot. $WHMATT_i$ = Total tons of waived quality characteristic HMA. QF_{OCi} = Running quality factor for the individual quality characteristic. QF_{QCi} for i = 1 through 4 must be from verified Contractor's QC results. QF_{QC5} must be determined from the Engineer's results on density cores taken for percent of maximum theoretical density determination. w = Weighting factor listed in the HMA acceptance table. i = Quality characteristic index number in the HMA acceptance table. If the payment adjustment is a negative value, the Engineer deducts this amount from payment. If the payment adjustment is a positive value, the Engineer adds this amount to payment. The 21st sublot becomes the 1st sublot (n = 1) in the next lot. When the 21st sequential sublot becomes the 1st sublot, the previous 20 sequential sublots become a lot for which the Engineer determines a quality factor. The Engineer uses this quality factor to pay for the HMA in the lot. If the next lot consists of less than 8 sublots, these sublots must be added to the previous lot for quality factor determination using 21 to 27 sublots. #### 39-4.05C Dispute Resolution For a lot, if you or the Engineer dispute any quality factor, QF_{QCi} , or verification test result, every sublot in that lot must be retested. Referee tests must be performed under the specifications for acceptance testing. Any quality factor, QF_{OCi}, must be determined using the referee tests. For any quality factor, QF_{OCi} , for i = 1 through 5, dispute resolution: - 1. If the difference between the quality factors for QF_{QCi} using the referee test result and the disputed test result is less than or equal to 0.01, the original test result is correct. - 2. If the difference between the quality factor for QF_{QCi} using the referee test result and the disputed test result is more than 0.01, the quality factor determined from the referee tests supersedes the previously determined quality factor. #### 39-5 MEASUREMENT AND PAYMENT #### 39-5.01 MEASUREMENT The contract item for HMA is measured by weight. The weight of each HMA mixture designated in the Engineer's Estimate must be the combined mixture weight. If tack coat, asphalt binder, and asphaltic emulsion are paid with separate contract items, their contract items are measured under Section 92, "Asphalts," or Section 94, "Asphaltic Emulsions," as the case may be. If recorded batch weights are printed automatically, the contract item for HMA is measured by using the printed batch weights, provided: - 1. Total aggregate and supplemental fine aggregate weight per batch is printed. If supplemental fine aggregate is weighed cumulatively with the aggregate, the total aggregate batch weight must include the supplemental fine aggregate weight. - 2. Total asphalt binder weight per batch is printed. - 3. Each truckload's zero tolerance weight is printed before weighing the first batch and after weighing the last batch. - 4. Time, date, mix number, load number and truck identification is correlated with a load slip. - 5. A copy of the recorded batch weights is certified by a licensed weighmaster and submitted to the Engineer. The contract item for placing HMA dike is measured by the linear foot along the completed length. The contract item for placing HMA in miscellaneous areas is measured as the in-place compacted area in square yards. In addition to the quantities measured on a linear foot or square yard basis, the HMA for dike and miscellaneous areas are measured by weight. The contract item for geosynthetic pavement interlayer is measured by the square yard for the actual pavement area covered. ## **39-5.02 PAYMENT** The contract prices paid per ton for hot mix asphalt as designated in the Engineer's Estimate include full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in constructing hot mix asphalt, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. If HMA is specified to comply with Section 39-4, "Quality Control / Quality Assurance," the Engineer adjusts payment under that section. Full compensation for the Quality Control Plan and prepaving conference is included in the contract prices paid per ton for hot mix asphalt as designated in the Engineer's Estimate and no additional compensation will be allowed therefor. Full compensation for performing and submitting mix designs and for Contractor sampling, testing, inspection, testing facilities, and preparation and submittal of results is included in the contract prices paid per ton for HMA as designated in the Engineer's Estimate and no additional compensation will be allowed therefor. Full compensation for reclaimed asphalt pavement is included in the contract prices paid per ton for HMA as designated in the Engineer's Estimate and no additional compensation will be allowed therefor. The contract price paid per ton for hot mix asphalt (leveling) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in hot mix asphalt (leveling), complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. The State pays for HMA dike at the contract price per linear foot for place HMA dike and by the ton for HMA. The contract prices paid per linear foot for place hot mix asphalt dike as designated in the Engineer's Estimate include full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in placing HMA dike, complete in place, including excavation, backfill, and preparation of the area to receive the dike, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. The State pays for HMA specified to be a miscellaneous area at the contract price per square yard for place hot mix asphalt (miscellaneous area) and per ton for hot mix asphalt. The contract price paid per square yard for place hot mix asphalt (miscellaneous area) includes full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in placing HMA (miscellaneous area) complete in place, including excavation, backfill, and preparation of the area to receive HMA (miscellaneous area), as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. If the Quality Control / Quality Assurance construction process is specified, HMA placed in dikes and miscellaneous areas is paid for at the contract price per ton for hot mix asphalt under Section 39-4, "Quality Control / Quality Assurance." Section 39-4.05B, "Statistical Evaluation, Determination of Quality Factors and Acceptance," does not apply to HMA placed in dikes and miscellaneous areas. If there are no contract items for place hot mix asphalt dike and place hot mix asphalt (miscellaneous area) and the work is specified, full compensation for constructing HMA dikes and HMA (miscellaneous areas) including excavation, backfill, and preparation of the area to receive HMA dike or HMA (miscellaneous area) is included in the contract price paid per ton for the hot mix asphalt designated in the Engineer's Estimate and no separate payment will be made therefor. The contract price paid per square yard for geosynthetic pavement interlayer includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing geosynthetic pavement interlayer, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. The contract price paid per ton for paving asphalt (binder, geosynthetic pavement interlayer) includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying paving asphalt (binder, geosynthetic pavement interlayer), complete in place, including spreading sand to cover exposed binder material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. Full compensation for small quantities of HMA placed on geosynthetic pavement interlayer to prevent displacement during construction is included in the contract price paid per ton for the HMA being paved over the interlayer and no separate payment will be made therefor. The contract price paid per ton for tack coat includes full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying tack coat, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. The Engineer does not adjust payment for increases or decreases in the quantities for tack coat, regardless of the reason for the increase or decrease. Section 4-1.03B, "Increased or Decreased Quantities," does not apply to the items for tack coat. Full compensation for performing smoothness testing, submitting written and electronic copies of tests, and performing corrective work including
applying fog seal coat is included in the contract price paid per ton for the HMA designated in the Engineer's Estimate and no separate payment will be made therefor. Full compensation for spreading sand on RHMA-G, RHMA-O, and RHMA-O-HB surfaces and for sweeping and removing excess sand is included in the contract price paid per ton for rubberized hot mix asphalt as designated in the Engineer's Estimate and no separate payment will be made therefor. If the Engineer fails to comply with a specification within a specified time, and if, in the opinion of the Engineer, work completion is delayed because of the failure, the Engineer adjusts payment and contract time under Section 8-1.09, "Right of Way Delays." If the dispute resolution ITP determines the Engineer's test results are correct, the Engineer deducts the ITP's testing costs from payments. If the ITP determines your test results are correct, the State pays the ITP's testing costs. If, in the Engineer's opinion, work completion is delayed because of incorrect Engineer test results, the Engineer adjusts payment and contract time under Section 8-1.09, "Right of Way Delays."